

Acknowledgements

First and foremost, I would like to give my deepest gratitude to my supervisors, professors

Alberto Proença and António Onofre, for the excellent support, dedication, and more impor-

tantly, patience throughout the last seven years we have been working together. To professor

Proença, I would like to express my most sincere appreciation for helping me grow as a pro-

fessional, but above all, as a person, for showing me that I have to put myself and my family

first, for guiding me through tough times, and for always fighting to give me the best oppor-

tunities I could possibly have. To professor Onofre, I would like to thank for always believing

in me, showing the impact that I had on the work of real people even when I doubted my-

self, and for always being that motivating voice in these last years. I also have to mention

that without him I would not try rock climbing, which allowed me to meet the most ama-

zing people that completely changed my life. I hope that this was just the beginning of the

collaborations with both of them on a long road ahead.

I would like to give a heartfelt thank to my family, especially to my parents, my brother,

and my girlfriend for the endless support, confidence, and happiness throughout the chal-

lenges that I had to overcome throughout these years. Without them I could not be where I

am today, as they always believed and showed me that I had what it took.

And last, but not least, a sincere thank to all my friends, from inside and outside of the

university, who helped me distract from work in many times of stress, while creating the most

memorable moments of my life so far. Without them these last years would be so much har-

der to bear.

Finally, this work is partially funded by FCT – Foundation for Science and Technology, the

v

Portuguese Ministry of Science, Technology and Higher Education, through national funds,

and co-financed by the European Social Fund (ESF) through the Operacional Programme for

Human Capital (POCH), with scholarship reference SFRH/BD/119398/2016. This work was

developed with support of the computing facilities provided by the project "Search-ON2: Re-

vitalization of HPC infrastructure of UMinho” (NORTE-07-0162-FEDER-000086), co-funded

by the North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the Na-

tional Strategic Reference Framework (NSRF), through the European Regional Development

Fund (ERDF). Additional funding provided under the UTAustin Program, financed by FCT,

COMPETE POCI-01-0145-FEDER-007043 within the Project Scope UID/CEC/00319/2013 and

by the Laboratório de Instrumentação e Física Experimental de Partículas.

vi

Abstract

The key component of this thesis work is HEP-Frame, a framework to aid the develop-

ment and efficient execution of pipelined data stream applications in homogeneous and

heterogeneous servers. A pipelined data stream application is a process that converts

large amounts of experimental raw data into useful information to monitor data, test

hypotheses or validate theories. Each dataset element is then processed by a pipeline of

propositions, each containing a computational task that may be followed by an evalua-

tion of a criterion; if this fails the dataset element is removed from the pipeline.

Optimising the computational performance of these applications requires exper-

tise to efficiently vectorize and parallelise the code – namely to take advantage of the

vector extensions at each processor (core) and in multiple processors at each server with

accelerator devices, in a multi-server cluster – which most scientists lack, or an ade-

quate and easy to use tool or framework, which is nonexistent. With this motivation, the

HEP-Frame was designed, implemented and evaluated to provide an user-centred de-

velopment interface, through the use of code skeletons, automatic code generation, and

automation of the compilation process, while transparently scheduling and managing

the efficient parallel execution of the code on multicore and manycore servers, with and

without accelerator devices.

HEP-Frame implements a multi-layer scheduler that adapts at run-time the ap-

plication to the computational server(s) and processes the pipeline propositions and

various dataset elements in parallel, distributing them across the available computing

resources. The top layer balances data and workloads among servers in a heterogene-

ous cluster environment, using a demand-driven approach to allow HEP-Frame to scale

with multiple servers. The middle layer dynamically tunes the number of threads as-

signed to the parallel data read and setup of adequate data structures, and the pipeline

execution.

vii

The bottom layer manages the parallel execution of the dataset workload among the

available computing resources in a server; this layer includes the reordering of the pi-

peline propositions of the same dataset element and the parallel execution of multiple

dataset elements, ensuring that faster propositions that filter out more data are executed

before the more compute intensive propositions.

HEP-Frame also provides a wide range of efficient dual-buffer pseudo-random

number generators with uniform or Gaussian distributions, often required by these ap-

plications. These can be executed on the compute server, or offloaded to other multico-

re/manycore servers or to manycore/GPU accelerators. The dual-buffer strategy hides the

time penalties to transfer data from other servers or accelerator devices.

The quantitative evaluation of HEP-Frame used three versions of a real world

application, the t t̄ H particle physics event data analysis, developed and used by CERN

researchers: ttH_as, ttH_sci and ttH_scinp, each with a pipeline with 18 propositi-

ons in a default order defined by the developers. The former analysis is latency-bound

while the latter two are compute-bound. The t t̄ H analyses are originally sequential,

but multithreaded map-reduce parallelisations with OpenMP and StarPU were imple-

mented for thread-by-thread comparison with HEP-Frame. Five heterogeneous servers

were selected to perform a quantitative evaluation of the HEP-Frame performance: three

dual-socket servers with 12-, 16-, and 24-core Xeon devices (Ivy Bridge, Broadwell, and

Skylake, respectively), with the former server being coupled with an NVidia Tesla K20

Kepler GPU and two Intel Xeon Phi Knights Corner devices; a single-socket 10-core Bro-

adwell device coupled with a NVidia GTX 1070 Pascal GPU; and a single-socket 64-core

Intel Xeon Phi Knights Landing (KNL) device.

Overall, HEP-Frame improved the performance of the ttH_as, ttH_sci and

ttH_scinp applications over their original sequential implementation, by 30x, 252x

and 185x on the KNL server and by 32x, 89x and 74x on an Ivy Bridge server with a Ke-

pler GPU. HEP-Frame ensured efficient execution of both memory- and compute-bound

pipelined data stream applications portable across various homogeneous and hetero-

geneous servers with accelerators (in clusters and grid/cloud environments), without re-

quiring any modification of the code, configuration by the user, or prior knowledge of

the system characteristics.

viii

Resumo

A componente chave desta tese é a HEP-Frame, uma framework para ajudar o desenvol-

vimento e execução eficiente de aplicações de streaming de dados em pipeline para ser-

vidores homogéneos e heterogéneos. Uma aplicações de streaming de dados em pipeline

é um processo que converte grandes quantidades de dados experimentais em informa-

ção útil para monitorizar dados, testar hipóteses ou validar teorias. Cada elemento dos

dados é processado por uma pipeline de proposições, em que cada contém uma tarefa

computacional que pode ser seguida da avaliação de um critério; se esta falha então o

elemento é removido do resto da pipeline.

Otimizar a performance computacional destas aplicações requer perícia para ve-

torizar e paralelizar eficientemente o código – nomeadamente para tirar partido das ex-

tensões vetoriais em cada processador (núcleo) e em múltiplos processadores em cada

servidor com aceleradores computacionais, num cluster – que a maior parte dos cien-

tistas não tem, ou de uma ferramenta ou framework adequada fácil de usar, que é ine-

xistente. Com esta motivação, a HEP-Frame foi desenhada, implementada e avaliada

para disponibilizar uma interface de desenvolvimento focada no utilizador, através do

uso de esqueletos de código, geração automática de código e automatização do processo

de compilação, enquanto que gere de forma transparente e eficiente a execução paralela

do código em servidores multicore e manycore, com ou sem aceleradores de computação.

A HEP-Frame implementa um escalonador com várias camadas que se adapta às

aplicações e aos servidores computacionais em tempo de execução e processa as propo-

sições e vários elementos de dados em paralelo, distribuindo-os entre os recursos com-

putacionais disponíveis. A camada superior distribui os dados e tarefas computacio-

nais entre os servidores num ambiente de cluster heterogéneo, usando uma abordagem

demand-driven para permitir que a HEP-Frame escale com múltiplos servidores.

ix

A camada intermédia ajusta dinamicamente o número de fios de execução alocados

para a leitura e inicialização paralela de dados, e para a execução da pipeline.

A HEP-Frame também disponibiliza uma grande variedade de geradores de nú-

meros pseudo-aleatórios eficientes em duplo-buffer com distribuições uniformes e Gaus-

sianas, que são normalmente necessários por estas aplicações. Estes podem ser executa-

dos nos servidores de computação, ou passados para outros servidores multicore/many-

core ou para aceleradores manycore/GPU. A abordagem duplo-buffer esconde os tempos

de acesso para transferir dados de e para os outros servidores ou aceleradores.

A avaliação quantitativa da HEP-Frame usou três versões de uma aplicação real,

a análise de eventos da física de partículas t t̄ H, desenvolvida e usada por investigadores

do CERN: ttH_as, ttH_sci e ttH_scinp, cada com uma pipeline com 18 proposições

numa ordem inicial definida pelos programadores. A primeira análise é limitada pela

latência da memória enquanto que as restantes são limitadas pela capacidade compu-

tacional. As análises t t̄ H são originalmente sequenciais, mas uma paralelizações mul-

tifio com OpenMP e StarPU foram implementadas para comparar com a HEP-Frame.

Cinco servidores heterogéneos foram selecionados para fazer a avaliação quantitativa

da performance da HEP-Frame: três servidores duplo-socket com dispositivos Xeon de

12-, 16-, e 24-núcleos (Ivy Bridge, Broadwell, e Skylake, respetivamente), sendo o pri-

meiro usado em conjunto com um dispositivos GPU NVidia Tesla K20 Kepler e dois Intel

Xeon Phi Knights Corner; um servidor de socket único com um dispositivo Broadwell de

10 núcleos com um GPU NVidia GTX 1070 Pascal; e um servidor de socket único Intel

Xeon Phi Knights Landing (KNL) com 64 núcleos.

A HEP-Frame melhorou a performance das aplicações ttH_as, ttH_sci e ttH_-

scinp por 30x, 252x e 185x no servidor KNL e por 32x, 89x e 74x no servidor Ivy Bridge

com o GPU Kepler, em relação às suas versões sequenciais. A HEP-Frame garantiu exe-

cução eficiente e portável de aplicações de streaming de dados em pipeline limitadas

pela memória e pela capacidade computacional em vários servidores homogéneos e he-

terogéneos com aceleradores (em ambientes cluster e grid/cloud), sem requerer qualquer

modificação do código, configuração por parte do utilizador, ou conhecimento prévio

das características dos servidores.

x

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 6

1.3 Document Structure . 7

2 Parallel Computing Environments 9

2.1 Homogeneous Servers . 12

2.1.1 Multicore Devices . 13

2.1.2 Manycore Devices . 15

2.2 Heterogeneous Servers . 18

2.2.1 Graphics Processing Units . 19

2.2.2 Manycore Coprocessors . 23

2.2.3 Other Hardware Accelerators . 25

2.3 Pipelined Data Streaming . 26

2.3.1 Computational Characterisation . 28

2.3.2 Compute Intensive Tasks . 31

2.3.3 Parallelisation Approaches . 33

2.4 Software for Efficient Parallel Execution . 35

2.4.1 Libraries and Schedulers for Efficient Parallel Computing 35

2.4.2 Frameworks for Efficient Parallel Computing 41

2.5 Random Number Generation . 44

2.5.1 Popular PRNG Algorithms . 46

2.5.2 Transforming Uniformly Distributed PRNs 46

2.5.3 PRNG Libraries . 47

xi

xii CONTENTS

2.6 Summary . 48

3 HEP-Frame: a Highly Efficient Pipelined Framework 51

3.1 HEP-Frame Structure and Usability . 53

3.1.1 Initial User Interaction . 54

3.1.2 Tools to Automate the Application Development 56

3.2 HEP-Frame Multi-layer Scheduler . 59

3.2.1 Structure of the Scheduler Layers . 59

3.2.2 Multiprocess Scheduling . 60

3.2.3 Dynamic Tuning of Data Setup and Processing 62

3.2.4 Pipeline Ordering and Parallel Execution 64

3.3 Using Accelerator Devices . 69

3.3.1 Offloading Propositions into the KNC Coprocessor 70

3.3.2 Offloading PRNGs to Multicore, Manycore and Accelerator Devices . . . 72

3.3.3 Pipeline Reordering and Parallelisation in the KNL Server 76

3.4 Summary . 78

4 HEP-Frame Performance Evaluation 81

4.1 Case Studies: t t̄ H Scientific Data Analyses . 82

4.1.1 The t t̄ H Analysis Code . 83

4.1.2 Simple Parallelisation . 87

4.1.3 Porting t t̄ H Analyses into HEP-Frame and StarPU 88

4.1.4 Key Characteristics of the t t̄ H Analyses . 89

4.2 Testbed and Methodology . 89

4.3 Results and Discussion . 90

4.3.1 Dynamic Tuning of DS and DP Threads . 91

4.3.2 Multithreading with and Without HEP-Frame 92

4.3.3 Multiprocess on Multi-Socket Servers . 95

4.3.4 Proposition Offload to Knights Corner Accelerators 97

4.3.5 Efficient Generation of PRN Batches . 98

4.3.6 HEP-Frame in a Manycore KNL Server . 104

CONTENTS xiii

4.3.7 HEP-Frame vs. StarPU . 107

4.3.8 Overall Performance vs. the Original Case Studies 108

4.4 Summary . 110

5 Conclusions and Future Work 113

5.1 Future Work . 116

References 119

A Installing and Creating an Application With HEP-Frame 1

A.1 Installing HEP-Frame . 1

A.2 Creating a Pipelined Data Stream Application With HEP-Frame 2

A.2.1 Pipelined Data Stream Application Execution and Output 6

B HEP-Frame API 9

B.1 Pseudo-Random Number Generation . 9

B.2 Event Loading and Output Storage . 11

B.3 Interaction with External Libraries . 13

xiv CONTENTS

CONTENTS xv

Glossary

Accelerators hardware to boost the performance of specific computations

Acyclic graph a directional graph with no cycles

API Application Programming Interface, a set of functions to access the functionalities of a

given application

CUDA Compute Unified Device Architecture, an API to develop code for CUDA-enabled de-

vices

DP Data Processing, a task that processes a dataset element

DS Data Setup, a task that combines input reading, data structure creation, and initialisation

GPU Graphics Processing Unit accelerator device

HEFT Heterogeneous Earliest Finish Time, an heuristic for load balancing in heterogeneous

platforms

Heterogeneous server a server with multicore processing units and accelerators

Homogeneous server a server with multicore processing units

KNC an Intel Xeon Phi manycore co-processor of the Knights Corner micro-architecture

KNL an Intel Xeon Phi manycore server of the Knights Landing micro-architecture

Manycore a specialised processing unit designed for a high degree of parallel processing

Multicore a processing unit with multiple processing cores

Multiprocess code parallelisation that resorts to the use of multiple software processes

Multithread code parallelisation that resorts to the use of multiple software threads

PCI-Express Peripheral Component Interconnect Express, a high speed bus for computer

expansion, such as connecting accelerator devices

xvi CONTENTS

PRNG Pseudo-Random Number Generator

Proposition a computational task that may filter out data from a pipeline

Scheduler a mechanism to manage threads, processes, and workloads across the available

computing resources

SIMD Single Instruction Multiple Data, a parallel microinstruction architecture

SMT Simultaneous Multithreading, multiple hardware threads in a single physical comput-

ing core

List of Figures

2.1 Schematic representation of a dual-socket homogeneous server with two mul-

ticore CPU devices. 13

2.2 Schematic representation of the Intel Xeon Phi Knights Landing architecture. . 16

2.3 Schematic representation of a dual-socket heterogeneous server with two mul-

ticore CPU devices coupled with two accelerator devices. 19

2.4 Schematic representation of the NVidia Kepler architecture (obtained from [1]). 21

2.5 Schematic representation of the Intel Xeon Phi Knights Corner architecture. . . 23

2.6 Structure of a typical flexible pipelined data stream application using a batch

(top) and mini-batch (bottom) input strategies. 29

2.7 Processing a dataset element using a simple offload (top) and an interleaved

offload (bottom). 33

2.8 Schematic representation of the conventional multithread (top) and multipro-

cess (bottom) parallelisation strategies for scientific code, using 3 threads t X

and processes p X . 33

3.1 Schematic representation of the HEP-Frame directory structure. 54

3.2 Execution flow with the HEP-Frame: the user provides code for the darker boxes

(orange and green) and the framework run-time system manages the blue boxes. 56

3.3 Multi-layer structure of the HEP-Frame scheduler. 60

3.4 Sample pipeline execution with the HEP-Frame scheduler. 66

3.5 Proposition table update as the scheduler moves propositions 4 and 6. 67

xvii

xviii LIST OF FIGURES

3.6 Typical list scheduler vs. HEP-Frame list scheduler for a pipeline of 4 proposi-

tions with no dependencies. 68

3.7 Comparison of the scheduling of a pipeline of propositions in the multicore and

KNC devices. 71

3.8 Dual buffer implementation in the PRNG management threads. 74

3.9 Sequential execution time of each PRNG implementation for multicore devices

to generate 106 PRNs. 76

3.10 Scheduler pipeline reordering backtracking algorithm for the KNL server. . . . 77

3.11 Parallel execution of the pipeline in the KNL server for n threads (Th). 78

4.1 Schematic representation of the t t̄ production with an associated Higgs boson,

in the dileptonic physics channel. 84

4.2 Schematic representation of the proposition dependencies in t t̄ H analysis. . . 85

4.3 Speedup of dynamic vs static tuning of DS and DP threads on a dual-socket server. 91

4.4 Scalability of the t t̄ H analyses with HEP-Frame on a dual-socket Ivy Bridge server. 93

4.5 Speedup of the parallel t t̄ H analyses with HEP-Frame vs a standard OpenMP

parallelisation for the same number of threads on a server with single or dual

multicore devices. 94

4.6 Comparative performance of a dual process vs. a single process implementa-

tion on single and dual socket servers. 96

4.7 Comparative performance of a 4 process vs. a single process implementation

on single and dual socket servers. 97

4.8 Speedup of the case studies in a HEP-Frame prototype on a server with one or

two Ivy Bridge (IB) devices with KNC accelerators vs the same server without

accelerators. 98

4.9 Speedup of the parallel t t̄ H analyses with different PRNG algorithms and ap-

proaches vs the original ROOT single number PRNG on the Ivy Bridge server. . 100

4.10 Performance comparison of the Broadwell server vs the Ivy Bridge server. . . . 101

LIST OF FIGURES xix

4.11 Speedup of the parallel applications with different PRNG algorithms using ex-

ternal computing devices vs the original ROOT single number PRNG. 102

4.12 Throughput of the best PRNG for each different server and accelerator device. . 103

4.13 Speedup of KNL server configurations vs the multicore dual-socket IB server. . 105

4.14 Speedup of the KNL server vs 3 multicore dual-socket servers and a 4th with a

Kepler GPU. 106

4.15 Speedup of the case studies for 2, 4 and 6 KNL servers vs a single KNL server. . . 107

4.16 Speedup of the HEP-Frame scheduler vs the HEFT scheduler in StarPU on the

KNL manycore server and a dual-socket IB server. 108

4.17 Overall speedup of the case studies on HEP-Frame vs their original sequential

implementations. 109

A.1 The automatic process of compiling a pipelined data stream application in HEP-

Frame. 4

xx LIST OF FIGURES

List of Tables

4.1 Execution time of the 18 propositions in the t t̄ H analyses. 86

4.2 Filtering ratios of the 18 propositions in the t t̄ H analyses. 86

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

This chapter briefly introduces the research field of this dissertation. An overview of the

of the parallel computing platforms and the software features relevant for efficient ap-

plication execution is presented. The key challenges to the development and efficient

execution of parallel applications are listed and characterised.

Finally, a list of all the contributions which originated during the development of

this dissertation and the structure of this document are presented.

1

2 CHAPTER 1. INTRODUCTION

Current large-scale computing platforms are becoming increasingly complex by relying

on a large amount of computing servers, each with multiple multicore and/or manycore de-

vices and often coupled with hardware accelerators. The various computational resources

available inside a server with wider devices of different micro-architectures need to be ad-

equately used to ensure that applications execute as fast as possible. Mini-clusters are the

most popular computing platforms used by the scientific community, which combine a wide

variety of desktop and single-node servers. These single-node and desktop servers may be

classified as homogeneous, where a server only uses one or multiple multicore devices, or

heterogeneous, where one or multiple accelerators are coupled to homogeneous servers us-

ing the PCI-Express interface to create a distributed memory environment.

Multicore devices, commonly addressed as CPUs, are becoming increasingly wider for

the last decade, where each new chip packs more and more computing cores. For instance,

AMD latest server grade multicore device has up to 32 cores (with 2-way simultaneous multi-

threading per core, SMT), while Intel alternative has up to 28 cores (with 2-way SMT), which

can be used in multi-socket servers. The Intel manycore servers, such as the Knights Landing

Xeon Phi, provide up to 72 cores with 4-way SMT on a single chip, which reiterates this "more

cores per chip" trend. Hundreds of computing cores can be available in a single server, while

a few years ago they could only be found in mini-clusters.

Vector computers integrate computing cores based on the Single Instruction Multiple

Data (SIMD) architecture, where operations on one-dimensional vectors of independent data

are executed by a single instruction. This architecture provides significant performance im-

provements over scalar processing for specific workloads, and was very popular among su-

percomputers until the 1990s. Vector computers decrease in popularity was mostly due to

its lack of flexibility for general workloads and the drop in the price to performance ratio of

conventional processors. Modern multicore devices have a wide variety of SIMD extensions,

commonly addressed as vector instructions. It combines the vectorization potential to accel-

erate specific workloads with the flexibility of conventional multicore devices. While vector

instruction sets, such as AVX [2] and 3DNow! [3], do not implement all the features available

in the original vector computers, their utilisation is crucial to achieve the full computational

1.1. MOTIVATION 3

performance available in a server.

A deep knowledge of the underlying architectural details of the computing devices in a

server is crucial to develop code that efficiently takes advantage of the available computa-

tional resources. It is important to comprehend the key issues that impact the computing

performance and efficiency of applications, such as the relationship between the cost of nu-

merical computations, memory accesses and data communications among available com-

puting devices. These issues become imperative when using hardware accelerators, as the

architecture of each device is significantly different and often employ distinct programming

paradigms.

Developing an efficient parallel application, or adapting existing code, is crucial to ensure

that the multiple computing cores in multicore, manycore and accelerators are not used to

their full potential. Data races, resource contention, task and data scheduling, and, when

considering heterogeneous servers, explicit memory transfers among devices are complex

challenges that the programmer must overcome. The tuning of parallel code is often specific

to an application on a server, requiring multiple iterative profiling and optimisation time

consuming steps by a developer with extensive expertise in high performance computing to

achieve good efficiency. These challenges become increasingly complex for non-computer

scientists, which develop most of the applications that run on multidisciplinary computing

clusters, as they often lack the expertise and/or time to optimise their code. The performance

is specially relevant for applications that process large amounts of data, where results must

be obtained in a reasonable time frame.

1.1 Motivation

Developing applications that efficiently use the available computational resources in homo-

geneous and heterogeneous servers requires expertise in high performance computing. The

hardware in these servers poses challenges to the programmer that do not appear when de-

veloping sequential applications. These challenges become more difficult to overcome by

non-computer scientists, which are the developers of a significant amount of the applications

4 CHAPTER 1. INTRODUCTION

that run on high performance cluster environments. Several studies [4, 5, 6, 7] identified the

causes that lead non-computer scientists to develop inefficient code:

• Most non-computer scientists are focused on problems relative to their domain of ex-

pertise, which leaves little time to develop efficient parallel code.

• Non-computer scientists are not aware of software engineering principles to produce

efficient code that is also robust, modular and long lasting.

• Non-computer scientists often iteratively develop over the same application, produc-

ing legacy code (some applications currently in production are iterated on for the last

20 years), and not documenting it so that it can be used by others.

• Non-computer scientists are seldom aware of profiling and debugging tools, as well as

parallelisation paradigms.

• Non-computer scientists cannot focus on getting into the architectural details of the

newer generations of computing devices, reducing the efficiency and portability of

their produced code.

One of the most common applications developed by non-computer scientists relate to

the analysis of very large sets of experimental data, in a continuous input stream of n-tuples,

which aim to monitor, test and/or prove hypotheses and theories. The performance of these

applications is key to ensure that the large amounts of input data are processed in reasonable

time. Most scientific analyses apply a set of pipelined tasks (typically > 10) on independent

datasets [8, 9].

An efficient use of computational resources is crucial to significant improve by several

orders of magnitude the performance of applications used in several fields of the scientific

community. For instance, this is specially important in the high energy physics community

at CERN, where a large amount of data needs to be processed by complex analysis applica-

tions. The resources expected to become available to process the data gathered in the third

and fourth run of the Large Hadron Collider (LHC) will require an increase of the current

1.1. MOTIVATION 5

computational resources by a factor of 2 to 5 [10]. It is crucial that applications adequately

explore the computational resources available in the servers, as buying new hardware no

longer guarantees a significant improvement of the performance of applications. Applica-

tions must be as efficient as possible in the use of the hardware so that research groups can

make an assessment of their limitations and upgrade the hardware accordingly. HEP-Frame

ensures that pipelined data stream applications can better utilise the available hardware re-

sources, while ensuring that their efficiency is portable across newer hardware generations.

The performance improvements already seen from using HEP-Frame with existing applica-

tions achieve the increased computational throughput required by the third and fourth runs

of the LHC, from 2020 to 2029, without the need for additional hardware.

Pipeline stages in data stream applications typically have inter-dependencies and irregu-

lar execution times: several are computationally intensive and most filter out irrelevant data

elements from further processing. Independent filtering stages can also be commutative.

The execution order of the pipeline stages may significantly impact its efficiency, as their in-

dividual filtering rates and execution times are different and may change in run-time. This

type of applications is also common in fields directly related to computer science, such as

query engines and specific data streaming services for embedded and mobile devices [11, 12].

Efficient parallelisations of pipelined data stream applications may be complex to imple-

ment, as both task and data parallelism can be explored, and the pipeline execution is irreg-

ular. Additionally, the performance of the pipeline varies with different orders of its stages

and datasets, which should also be considered by the programmer. An adequate schedul-

ing strategy should analyse all these characteristics of pipelined data stream applications at

run-time to provide an efficient workload balance among the computational resources of ho-

mogeneous and heterogeneous servers.

Several frameworks and schedulers are available to develop and efficiently execute paral-

lel code for a wide range of applications. However, none of these tools are specifically suited

for the characteristics of pipelined data stream applications, which often results in inefficient

parallelisations. Additionally, frameworks have steep learning curves and schedulers are not

easily integrated into existing parallel code, which may difficult their adoption by computer

6 CHAPTER 1. INTRODUCTION

and non-computer scientists with moderate to low expertise on parallel computing.

This dissertation presents HEP-Frame, a framework designed to aid the development and

efficient parallel execution of pipelined data stream applications. It provides an easy inter-

face to develop applications, while automating the code generation of simple and repetitive

tasks. A multi-layer scheduler transparently manages simultaneous input data setup and

processing, parallel execution and reorganisation of the pipeline stages among the available

computing resources, and application execution on multiple servers. HEP-Frame ensures a

more efficient execution of pipelined data stream applications than other alternatives, with

no modifications to the user code.

1.2 Contributions

Most software tools focus either on improving the performance or the development of spe-

cific applications. Tools that focus only on performance are often used in the computer sci-

ence community, but are rarely adopted by the rest of the scientific community due to their

steep learning curves. Tools to aid the development of code are widely used, specially in

non-computer science communities, but they are usually computationally inefficient. This

dissertation presents HEP-Frame, a software tool that aids the development of pipelined data

stream applications, while transparently ensuring efficient execution of the code on homoge-

neous and heterogeneous servers. The goal is to provide a tool that bridges the gap between

performance and usability for pipelined data stream applications.

This work presents a multi-layer scheduler with two key novel approaches to task and

data balancing. The first is the dynamic tuning of threads assigned to data setup (input load-

ing and data structure creation) and to data processing, which allows HEP-Frame to automat-

ically adapt at run-time to the requirements of memory- and compute-bound code. The sec-

ond is the list scheduling of propositions in pipelines, which assigns propositions to threads

based on their execution time and filtering ratios, while simultaneously reordering them in

order to avoid executing the most computationally complex.

A study on the most efficient approach to manage pseudo-random number generation

1.3. DOCUMENT STRUCTURE 7

is also provided, which exposes the impact that an adequate usage of these algorithms may

have on application performance for multicore, manycore and GPU devices. HEP-Frame im-

plements the most efficient approaches, which users can access through an API.

The work described in this document is also published in:

• Multi-layer Scheduling with Adaptive Ordering of Pipelined Data Stream Analyses on

Heterogeneous Servers - André Pereira and Alberto Proença. Submitted to the Journal

of Parallel and Distributed Computing.

• HEP-Frame: a Powerful Tool to Build LHC Data Analyses - André Pereira, António

Onofre and Alberto Proença. Submitted to the European Physics Journal C.

• Efficient Use of Parallel PRNGs on Heterogeneous Servers - André Pereira and Alberto

Proença. In International Conference on Mathematical Applications, 2018 [13].

• Tuning Pipelined Scientific Data Analyses for Efficient Multicore Execution - André

Pereira, António Onofre and Alberto Proença. In Proceedings of the International Con-

ference on High Performance Computing Simulation, 2016 [14].

• HEP-Frame: A Software Engineered Framework to Aid the Development and Effi-

cient Multicore Execution of Scientific Code - André Pereira, António Onofre and Al-

berto Proença. In Proceedings of the 2015 International Conference on Computational

Science and Computational Intelligence, 2015 [15].

• Removing Inefficiencies from Scientific Code: The Study of the Higgs Boson Cou-

plings to Top Quarks - André Pereira, António Onofre and Alberto Proença. In Pro-

ceedings of the 14th International Conference on Computational Science and Its Appli-

cations, 2014 [16].

1.3 Document Structure

This document describes the work accomplished while developing HEP-Frame. It is struc-

tured as follows:

8 CHAPTER 1. INTRODUCTION

Chapter 1: presents the context and motivation for the work developed in this dissertation.

It describes the challenges to develop efficient pipelined data stream applications and

lists the contributions of this work.

Chapter 2: describes the state of the art in a compute server environment. It details the hard-

ware architectures of homogeneous and heterogeneous servers, characterising the rel-

evant performance features of multicore, manycore and accelerator devices. Pipelined

data stream applications, the target code of the work in this dissertation, are presented

and characterised. Software to develop efficient pipelined code for various comput-

ing devices is also presented, with an emphasis on scheduling strategies for the tar-

get applications. Finally, efficient implementations of popular pseudo-random num-

ber generators are presented, as they often account for a significant execution time of

pipelined data stream applications.

Chapter 3: introduces HEP-Frame, providing a detailed description of its features to im-

prove the speed of developing efficient pipelined data stream applications, for users

with little expertise on parallel computing, and its multi-layer scheduler, which ensures

portable efficient execution of these applications on homogeneous and heterogeneous

servers.

Chapter 4: discusses the results of a quantitative evaluation of the efficiency features of HEP-

Frame with three real pipelined data stream applications, used in high energy physics,

on several servers with various computing devices.

Chapter 5: presents conclusions and identifies future lines of research to further develop the

work based on the contributions of this dissertation.

Chapter 2

Parallel Computing Environments

This chapter presents a look into what has been done in the topics related to the work of

this dissertation. The first section focus on the current state of the computing hardware

available in desktop and cluster environments. The architecture of homogeneous and

heterogeneous servers with multicore, manycore and relevant accelerator devices is pre-

sented, with an emphasis on key characteristics that should be taken into account when

developing efficient parallel code.

Pipelined data streaming, the target application of this dissertation, is presented

in detail, with a focus on its structure and computational characteristics that may influ-

ence the performance. An overview of common parallelisation approaches used in this

type of code by the wider scientific community is also presented.

The relevant software tools and schedulers for efficient code execution in ho-

mogeneous and heterogeneous servers are assessed, showing an overview of their ap-

proach and possible limitations for pipelined data stream applications. The last Sec-

tion presents popular PRNG algorithms, detailing their computing characteristics and

limitation, as they often account for a significant portion of the pipelined data stream

applications execution time.

9

10 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

Mini-clusters are the most common computing resource available to scientific research

groups. These massively parallel systems are usually constituted by racks of computing nodes

(also known as computing servers), interconnected by a low latency network. Each server in

a cluster is an individual parallel system that can communicate and share data with other

servers. Clusters can be homogeneous or heterogeneous computing platforms, depending

on the architectures of their servers. Homogeneous clusters are built with sets of identical

servers, such as type of multicore and manycore devices, and amount and speed of RAM.

Heterogeneous clusters use servers with different characteristics, usually organised in groups

oriented to fulfil specific application requirements. Clusters have also specific servers for

centralised high throughput data storage.

Computing servers can also be classified as homogeneous and heterogeneous, depend-

ing on the characteristics of their computing devices. Homogeneous servers are single- or

multi-socket systems with the same multicore or manycore device in each socket, which

share a common memory address space. Heterogeneous servers use single- or multi-socket

systems, similarly to homogeneous servers, that couple hardware accelerators to the mul-

ticore/manycore devices. This approach combines the flexibility of the main computing

devices with the high performance capabilities of manycore devices for specific workloads.

However, the multicore and manycore devices do not share a common memory address

space with the accelerators, which has to be managed by software. The hardware charac-

teristics of these servers are detailed in sections 2.1 and 2.2.

Pipelined data stream applications continuously execute a pipeline of tasks on large input

datasets. This type of applications is common in many scientific fields, and is usually devel-

oped by non-computer scientists. The performance of the input pre-processing and the task

pipeline has a direct impact on the overall execution time of an application. The develop-

ment of these applications should take into account strategies to efficiently parallelise their

execution to adequately explore the computational resources available in both homogeneous

and heterogeneous servers.

The mainstream industry is still adopting the use of multicore architectures with the pur-

pose of increasing their processing performance, which reflects in a lack of academic training

11

on code optimisation and parallel programming. Efficient parallelisation of code for these

types of servers requires expertise and time to tune the implementations that most develop-

ers lack, specially for servers that combine devices with different architectures and program-

ming paradigms. These factors are specially relevant for non-computer scientists, which are

usually self-taught programmers, as they often develop pipelined data stream applications

for their researches.

Developing code for homogeneous servers requires knowledge of the underlying hard-

ware architecture of multicore and/or manycore devices and their interconnections. Shared

memory, cache coherence and consistency and data races are architecture-specific aspects

that the developer does not face in sequential execution environments. However, these con-

cepts are crucial not only to efficiently use the computational resources, but also to ensure

the correctness of applications.

Developing code for heterogeneous servers poses additional challenges. Each accelera-

tor device has an unique hardware architecture and programming paradigm designed for a

specific workload, which must be mastered to develop code that adequately uses the avail-

able resources. For instance, algorithms optimised for multicore execution cannot be eas-

ily ported for these devices expecting high performance, and sometimes require a complete

re-design of their implementation. Executing an algorithm in multicore/manycore and ac-

celerator devices simultaneously creates an additional layer of complexity, as it requires the

implementation of complex workload distribution strategies to ensure that all devices are

adequately used.

Several libraries and frameworks are available that are designed to help the parallelisation

and workload distribution of data and tasks among the computing devices of homogeneous

and heterogeneous servers. Libraries mostly focus on the parallelisation of user-specified

sections of an application, requiring minor modifications to the code. They provide simple

parallelisation and scheduling techniques that are useful for a wide range of applications.

Frameworks target specific types of applications and impose more restrictions to the code

structure, such as requiring specific data structures to be used, but provide better computa-

tional efficiency. The most relevant libraries and frameworks for efficient code execution on

12 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

homogeneous and heterogeneous servers are detailed in Section 2.4.

Pseudo-random number generation (PRNG) is a compute intensive task required by most

pipelined data stream applications. Popular PRNG algorithms are presented, addressing the

different approaches for execution in parallel environments. Several PRNG implementa-

tions available in Intel, ROOT, PCG and cuRAND libraries are evaluated on various multicore,

manycore and GPU devices in Section 2.5.

2.1 Homogeneous Servers

Homogeneous servers are the most common computing platforms used in cluster environ-

ments, and contain a single or multiple multicore CPU or manycore devices of the exact same

manufacturer and model. Figure 2.1 presents the organisation of a dual-socket homogeneous

server. Each device has its own memory hierarchy, which usually contains L1, L2 and L3

caches and a RAM memory bank, and an high bandwidth interface that allows connecting

to other devices inside the same server, such as Intel QuickPath Interconnect [17] or AMD

Infinity Fabric [18]. Devices in multi-socket server connect to each other using one of these

interfaces, which enables sharing of the entire memory hierarchy address space in a Non-

Unified Memory Architecture (NUMA).

In a NUMA shared memory address space, a computing core can access data in the mem-

ory hierarchy of its device and any other connected device, but with different access latencies.

Accessing data in the memory bank of any other device has an increased time penalty as the

request and data transfer has to pass through the device interconnection and has to be man-

aged by the memory controller on the other device. Ideally, the threads and/or processes

of a parallel application should only access data in their closest memory bank, as accessing

data in other memory banks results in an increased time penalty that has an impact on the

application execution time.

2.1. HOMOGENEOUS SERVERS 13

Figure 2.1: Schematic representation of a dual-socket homogeneous server with two multi-
core CPU devices.

2.1.1 Multicore Devices

Gordon Moore predicted in 1965 that for the following ten years the amount of transistors

on CPU devices would double every 1.5 years [19]. This was later known as the Moore’s Law

and it remained valid until recently, and meant that smaller and, consequently, more transis-

tors in a chip allowed for an almost linear improvement of the hardware performance. This

phenomena created an environment where software developers did not spend much effort

optimising the computational efficiency of their applications as the code would get faster due

to the incremental improvements of the hardware.

The CPU clock frequency, which has a direct impact on how fast microinstructions are

executed, improved linearly until 2005, where thermal dissipation limited further improve-

ments. This lead manufacturers to improve the CPU throughput, rather than their speed, by

adding more processing units (known as cores) to a single chip, creating the first multicore

devices. These devices had lower clock speeds, as well as energy consumption and operating

temperatures, but could execute more microinstructions in each clock cycle. This marked

14 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

the beginning of the multicore and parallel computing era, where every new generation of

CPU devices has a larger throughput, while maintaining the same clock frequencies. How-

ever, software developers now have to produce parallel code to take advantage of the multiple

computing cores in multicore devices, to ensure efficient execution of applications.

Multicore devices are designed as general purpose computing units based on a set of

small processing units attached to a very fast hierarchical memory (cache, whose purpose

is to hide the high latency access to global memory). They are capable of delivering a good

performance in a wide range of workloads, from executing simple integer arithmetic on scalar

values to complex branching and vector processing. A single core implements, at the hard-

ware level, various mechanisms to improve the execution performance of applications. The

most relevant to a software developer are:

ILP: Instruction Level Parallelism is the overlapping of microinstructions that would other-

wise execute sequentially, and can be performed at both the hardware and software

level. At the software level, compilers attempt to identify and group independent in-

structions that can execute simultaneously, according to the available hardware re-

sources. Developers can expose independent instructions to the compiler by, for in-

stance, overlapping additions and multiplications on independent data, as these in-

structions can be processed simultaneously by different Arithmetic and Logic Units

(ALUs).

Vector instructions: is an extension to an instruction set based on the Single Instruction

Multiple Data (SIMD) model, where a single instruction is simultaneously applied to

a large set of independent data. Multicore devices have specialised registers and ALUs

to execute this type of instructions. Developers can produce vectorized code by using

intrinsic instructions of a high level language, which is best suited for complex algo-

rithms, or, in most cases, by indicating to the compiler which sections of the code are

suited for automatic vectorization. However, the developer is responsible for assessing

that code is adequate to be vectorized, as forcing the vectorization of unsuitable code

can cause a degradation in the application performance.

2.1. HOMOGENEOUS SERVERS 15

Simultaneous Multithreading (SMT): is the hardware support for the execution of multiple

threads in a single core of a multicore device, where several threads can run at any

given time. This is achieved by replicating part of the core hardware resources, such

as registers, to improve the use of the available ALUs in a core. If a piece of code in a

hardware thread stalls waiting for data, a second thread is scheduled to execute using

the ALUs that would otherwise be idle. SMT can reduce the synchronisation penalties

between multiple software threads of an application, as data sharing is faster since they

are both executing on the same physical core. The use of SMT can improve the perfor-

mance of memory intensive applications but hinder compute intensive code, so it is

the responsibility of the developer to assess if an application could benefit from this

feature.

2.1.2 Manycore Devices

The Intel Many Integrated Core (MIC) architecture, implemented in the Intel Xeon Phi de-

vices, is a manycore device available as either a coprocessor (the Knights Corner architecture)

or an autonomous processor (the Knights Landing architecture). The Knights Landing many-

core server is based on the Intel Atom Silvermont architecture, with an increased number of

cores per device and improved vectorization capabilities over the device it is based on.

Figure 2.2 presents a schematic representation of the Knights Landing architecture. The

micro-architecture of this family offers up to 36 tiles - with two cores per tile, each supporting

the simultaneous execution of 4 threads - interconnected by a 2-dimensional mesh. Each

core has two 512-bit vector arithmetic units that support most of the AVX-512 instruction

set specification, an improvement over the previous iteration of this architecture (Knights

Corner). The device has 64 KiB data and 64 KiB instruction caches per core, up to 32 MiB of L2

cache (1 MiB per tile) and access to 384 GiB of DDR4 RAM through eight memory controllers,

with a bandwidth of 102 GiB per second.

It has an additional in-package 16 GiB of stacked MCDRAM memory with a bandwidth of

400 GiB per second, which can be configured, according to the specific requirements of each

application, as:

16 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

Figure 2.2: Schematic representation of the Intel Xeon Phi Knights Landing architecture.

Cache: it acts as a third cache level, and its use does not require any modifications to the ap-

plication code. Frequent misses on this cache may lead to a decrease in performance.

This configuration should not be used for latency-bound applications as preliminary

tests show a 20% increase in latency over directly accessing the DDR4 RAM.

Flat: it becomes an addressable Section of the global memory address space. Applications

can allocate data structures on this memory by using specific instructions in their code.

Hybrid: it is split evenly between the two previous configurations, with 8 GiB configured as

cache and the other 8 GiB as flat memory.

The mesh structure of the cores interconnection allows the user to organise them in dif-

ferent clustering configurations. Each configuration has a direct impact on the cache con-

sistency and coherence protocols, as well as in communication and latency penalties since

certain tiles are closer to specific MCDRAM banks than others. The clustering configuration

affects both the application parallelisation implementation and its performance:

2.1. HOMOGENEOUS SERVERS 17

All-to-All: the whole memory address space shared among all tiles in the device. However, a

tile in the middle of the mesh will have higher cache miss penalties than a tile closer to

the MCDRAM bank. This configuration also allows sharing data among a large amount

of tiles, which can lead to an increased overhead of the cache consistency and coher-

ence protocols.

Hemisphere/Quadrant: divides the tiles into 2 or 4 computing sections of the chip, which

are still presented to the user as a single computing device. These sections may share

data but the memory controllers only manage their respective Section, which ensures

lower L2 cache and MCDRAM miss penalties. Sharing memory among sections has

an increased overhead over the All-to-All configuration. Users should code their appli-

cations in order to minimise shared data but no major modifications to the code are

required.

SNC-2/SNC-4: sub-NUMA cluster partitions the tiles into 2 or 4 independent computing

sections of the chip, which are presented to the user as different devices. This re-

duces cache management overhead and penalties to access MCDRAM, as tiles in a

sub-cluster can only share data among each other and access their respective MC-

DRAM banks. Communications between clusters must be explicitly coded using a Mes-

sage Passing Interface [20] library. Users can develop hybrid multithread-multiprocess

NUMA-aware code to take advantage of this organisation by pinning processes to cer-

tain clusters.

The Knights Landing device uses the same x86 instruction set as conventional multicore

devices, which ensures an increased compatibility of applications and libraries. The code

still has to be compiled specifically to this architecture to adequately use the AVX-512 vector

instruction set. However, the user is still responsible for developing efficient code considering

the architecture of this device so that significant performance improvements are obtained, as

compilers optimisations are still very limited [21].

18 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

2.2 Heterogeneous Servers

Heterogeneous servers combine the flexibility of multicore devices with the specialised per-

formance of hardware accelerators in a single system. This type of servers is the most com-

mon among general consumers, as most laptop and desktop computers contain a multicore

device, used for general computation, coupled with a Graphics Processing Unit (GPU) ac-

celerator, which is specialised for image rendering. Both the scientific community and the

industry are adopting this type of servers into their computing clusters due potential of the

accelerators to greatly improve the performance of specific workloads.

These servers contain one or multiple multicore devices in a shared memory environ-

ment, similarly to an homogeneous server, which share a single interface to communicate

with any coupled accelerators, as shown in Figure 2.3. Applications must explicitly han-

dle memory transfers between accelerator and multicore devices since the memory address

space is distributed. This interface is usually PCI-Express, which has a theoretical peak bidi-

rectional bandwidth of 16 GiB per second for its 3.0 revision [22] (4.0 is available but it is not

yet widely adopted). This low bandwidth interface is often a significant bottleneck in applica-

tions that regularly communicate with accelerators. The IBM Power9 multicore devices sup-

port the NVLink 2.0 interface to directly connect to compatible NVidia GPU devices, offering

a bidirectional bandwidth of 150 GiB per second [23], which provides a significant improve-

ment over the PCI-Express interconnection. However, this interface is not supported by other

multicore and accelerator device manufacturers.

Accelerator devices are usually built with a large amount of small processing units de-

signed to perform simple operations, as opposed to the large and complex cores found in

multicore devices. These devices are best suited for massive parallel problems, where the

same instructions are applied to a large amount of independent data (SIMD execution), sim-

ilarly to vectorization on multicore devices. They are designed to perform these tasks ex-

tremely efficiently, freeing the multicore devices to perform more complex computations that

may benefit less from such a high degree of parallelisation. Compute intensive tasks such as

particle interaction simulation, molecular docking and training and inference of deep neural

2.2. HETEROGENEOUS SERVERS 19

Figure 2.3: Schematic representation of a dual-socket heterogeneous server with two multi-
core CPU devices coupled with two accelerator devices.

networks rely on numerical methods that are processed faster on specific accelerators than

on multicore devices.

As of November 2018, 41 of the first 100 clusters on the TOP500 list [24] use either NVidia

or Intel accelerator devices, which reiterates the importance of developing efficient code for

heterogeneous servers. NVidia GPUs are the most used accelerator, with Kepler, Pascal and

Volta based devices on 38 of the top 100 clusters. A similar list focused on consumption ef-

ficiency (computing power per Watt) Green500 [25] includes 8 clusters with NVidia GPU ac-

celerators on the top 10. The most popular accelerator devices will be presented through the

next subsections.

2.2.1 Graphics Processing Units

The Graphics Processing Units (GPUs) are one of the first hardware accelerators generally

used to improve the performance of specific workloads. They were initially designed to im-

prove the performance of rendering computer graphics, which started as simple pixel draw-

20 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

ing and evolved to support complex 3D scenes that require complex operations, such as

transforms, lighting, rasterisation, texturing, depth testing and image display. The GPU ar-

chitecture is based on the SIMD execution model. Image synthesising is, from the compu-

tational point of view, the processing of a large set of values that represent pixels. The pro-

cessing of each individual pixel usually does not depend on the processing of any other pixel

in the image. This allows all pixels in an image to be processed simultaneously by different

computing units in the GPU.

Due to the industry demand for customisable shaders, GPUs later allowed some program-

ming flexibility so that developers are able to modify the image synthesis process. Since im-

age synthesis with custom shaders is similar, from the technical perspective, to apply a given

algorithm to a 2D matrix, some researchers saw the potential to use these devices to boost

the performance of numerical computation. As GPU manufacturers allowed more flexibil-

ity to program their devices, the High Performance Computing (HPC) community started

to use them to improve the performance of specific massively data parallel problems. The

HPC community demand for these devices pushed manufacturers to add features related to

numerical computation into GPUs, such as support for double precision floating point arith-

metic. This later lead to the creation of GPUs specifically designed for scientific computing.

NVidia is the main GPU manufacturer for scientific computing GPUs, with a wide range

of available devices known as Tesla. These devices characteristics differ from general pur-

pose GPUs since they have more GDDR RAM, a different physical design of the printed cir-

cuit board to fit in cluster nodes and different cooling options. These chips also have minor

architectural modifications, such as more single and double precision processing units and

larger memory caches.

Kepler is the second most common architecture of NVidia GPUs on the Top 500 list [24],

and has been used to evaluate the performance of the framework proposed in this disserta-

tion. Figure 2.4 shows the Kepler architecture organisation in two main components: the set

of Streaming Multiprocessors (SMX), which can be loosely compared to cores in a multicore

device, and the internal memory hierarchy.

There may be up to 15 SMXs in a single chip, which are complex processing units re-

2.2. HETEROGENEOUS SERVERS 21

Figure 2.4: Schematic representation of the NVidia Kepler architecture (obtained from [1]).

sponsible for executing the microinstructions in the GPU. Each SMX contains 192 single pre-

cision and 64 double precision CUDA cores, small processing units capable of performing

basic arithmetic computation, 32 special function units, which perform complex computa-

tions such as trigonometric operations, and 32 load and store units. These computing units

operate synchronously at the GPU main clock rate.

Each SMX has 64 Ki 32-bit registers, for a maximum of 255 registers per CUDA thread (fur-

ther detailed in Subsection 2.4.1), a 64 KiB very fast memory for L1 cache and shared memory,

and a similar 48 KiB memory cache for read-only data. Finally, the Kepler architecture pro-

vides 1.5 MiB of L2 cache shared among all SMX units. The high end Kepler device is the Tesla

K80, which has a bandwidth of 280 GiBytes per second to its main memory. The bandwidth

for communications between multicore and GPU devices is restricted to only 16 GB/s (8 GB/s

in each direction of the channel) by the PCI-Express 3.0 interface.

CUDA threads execute in groups of 32, addressed as a warp, which simultaneously ap-

ply the same microinstruction to 32 different data values, using the SIMD execution model.

22 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

This behaviour is similar to vector instructions used in conventional multicore devices that

implement vector extensions to their instruction set.

Kepler implements several features to improve the usage of its computational resources:

Dynamic Parallelism: a kernel (algorithm coded in CUDA) running on the GPU is capable of

calling itself recursively, which allows to dynamically generate new workload to process

without the CPU interference. This improves irregular algorithms performance on the

GPU and reduces the communications to the CPU, as it is capable of adapting to the

workload.

Hyper-Q: this technology increases the amount of work queues to 32 simultaneously hard-

ware managed connections. It allows for multiple cores in a multicore device to launch

different kernels on the GPU simultaneously, improving the device resource usage.

Multiple threads of an application are able to share the GPU resources and transfer

memory simultaneously through independent channels.

Grid Management Unit: allows scheduling multiple grids simultaneously, which allows for

different kernels, from possibly different threads, to run concurrently (in combination

with Hyper-Q).

GPUDirect: this feature allows GPUs in a single system, or in a interconnected network, to

share data without the interference of the CPU and system memory, creating a direct

connection to Solid State Drives and other similar devices, reducing the latency of load-

ing datasets to its memory.

The most recent NVidia architecture, Volta, provides many improvements over Kepler. It

has up to 80 SMX on a single chip, with up to 96 KiB of memory for L1 cache and shared mem-

ory, 6 MiB of L2 cache, and a GDDR RAM bandwidth of 900 GiB per second, an improvement

from 480 GiB per second in Kepler. It is capable of connecting to multicore devices through

either PCI-Express 3.0 or NVLink 2.0.

This architecture supports up to 640 tensor cores per device, which are computing units

specifically designed to perform a fused multiply accumulate operations using three 4x4 ma-

2.2. HETEROGENEOUS SERVERS 23

trices in a single clock cycle. It also supports half-precision floating point operations, with

nearly doubles the throughput over single-precision computation. Both these improvements

in the GPU architecture are incredibly useful to improve the performance of algorithms based

on matrix-matrix computations, such as neural network training and inference.

2.2.2 Manycore Coprocessors

The Intel Xeon Phi manycore coprocessor, Knights Corner architecture, was the first device

in the MIC architecture lineup with the purpose of providing a performance similar to the

NVidia Tesla devices for scientific workloads. The Knights Corner architecture is schema-

tised in Figure 2.5. The design of Xeon Phi devices has a various key differences from GPUs,

as this coprocessor uses fewer computing units that capable of performing more complex

operations, and heavily relies on code vectorization. The current high end model, the In-

tel Xeon Phi 7120p, has 61 cores and 16 GB GDDR5 RAM, which connects to the multicore

devices through a PCI-Express 3.0 interface.

Figure 2.5: Schematic representation of the Intel Xeon Phi Knights Corner architecture.

Each core is able to run 4 threads simultaneously, and most of the parallelism is obtained

by using the vectorization capabilities provided by the 32 512-bit vector registers and AVX-512

instruction set. However, only a small set of AVX-512 vector operations are implemented in

24 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

the hardware, with the most complex being emulated by the compiler. This device also does

not support out of order execution, which greatly compromises the use of ILP. Each core has

64 KiB + 64 KiB for data + instructions L1 cache, and 512 KiB L2 cache, and there is no shared

cache among the 61 cores of the chip. The cores are connected by a bidirectional ring network

that does not implement an automatic protocol for cache consistency and coherence.

The Intel Xeon Phi coprocessor supports three operating modes:

Native: the device acts as an independent server, with one core reserved for the operating

system execution. The application and all required libraries must be compiled on the

host multicore device specifically to run on the coprocessor, copied to the its memory

along with the necessary input data, and then executed. No further interaction with

the host device is required until the application finishes executing.

Offload: the coprocessor acts as an accelerator, similarly to a GPU. Only part of the applica-

tion is set to run on the Xeon Phi, as implemented by its developer, and all data required

by the code must be explicitly transferred between the host multicore device and the

coprocessor. All library functions to be executed inside the coprocessor must be com-

piled and copied into its memory previous to the application execution.

Message passing: the device acts as an individual computing system in a network. Memory

transfers must be handled explicitly and the code should be parallelised using a Mes-

sage Passing Interface (MPI) implementation [20]. The restrictions mentioned in the

previous point are also applicable.

Intel claims that current applications can be easily ported to run on the Xeon Phi copro-

cessor since it uses the same instruction set as conventional x86 multicore devices. This may

be true for simple numerical processing applications, but an efficient port of complex appli-

cations that require the use of many external libraries is very difficult, or even unfeasible in

some cases [16, 21].

2.2. HETEROGENEOUS SERVERS 25

2.2.3 Other Hardware Accelerators

Many alternative hardware accelerators are currently available due to the increasing popu-

larity of GPUs and Intel coprocessors in the HPC community. Texas Instruments developed

their new line of Digital Signal Processors (DSP) designed for general purpose computing

while being very power efficient. They claim that these DSPs are capable of delivering 500

GFlops per second with only a 50 Watt energy consumption [26].

ARM, leaders of the mobile computing industry, are recently developing devices designed

for single-node servers in cluster environments 1. They are being adopted by the HPC com-

munity due to their high core count and vector instruction set that support 1024-bit wide

vectors with a very low power consumption [27].

Field-programmable gate arrays (FPGAs) are integrated circuits that can be configured

by the software developer, using a Hardware Description Language (HDL), resulting in a chip

that is designed for a specific algorithm. The first FPGAs contained only a small set of pro-

grammable logic units, around 9000, but current versions support up to 50 million, which

allows for complex algorithms to be translated into HDL. Currently, these devices are being

used as hardware accelerators to improve the performance of specific sections of an applica-

tion, similar to what GPUs do, as they can offer better performance than multicore devices at

a lower clock rate and power consumption [28].

Several devices designed to accelerate specific machine learning tasks, such as training

and inference of neural networks, are currently in development and/or production. These

devices specialise on high throughput matrix-matrix computations, using with simple mem-

ory hierarchies and a low power consumption. The Google Tensor Processing Unit is cur-

rently on its second version and is publicly available in Google clusters. This device performs

operations on 128x128 single and half precision matrices, with a theoretical performance of

45 TFlops per second [29]. The IBM TrueNorth architecture follows a similar design, where it

uses large amounts of simple interconnected cores to simulate neurons [30]. The Intel Ner-

vana architecture provides cores designed for basic matrix operations and convolutions, but

1e.g. the ARM based Montblanc project will replace the MareNostrum in the Barcelona Supercomputing Cen-
ter

26 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

requires applications to explicitly manage every detail of its memory hierarchy, which re-

duces the need for memory management hardware and allows more computing cores to be

packed in a chip [31].

2.3 Pipelined Data Streaming

A pipelined data stream application executes a set of tasks in a sequence to input data in

variable sized chunks or datasets, which are previously placed into adequate data structures.

Data is usually read by these applications using three different strategies: batch, mini-batch

and streaming.

The batch input loads and pre-processes a pre-defined batch of data (usually an input

data file) before being available to be processed by the application pipeline code. This is the

most commonly used strategy and allows for input reading and initial data setup of different

batches to be performed simultaneously. Pipelined data stream applications often explore

parallelism by executing multiple binaries of the same application with independent batches,

as it is the easiest parallelisation approach to implement.

The mini-batch input loads and pre-processes each individual dataset element, or a small

set of elements, from an input batch, which allows data to be earlier available for processing

by the application pipeline. However, the most common implementation of this approach

relies on reading and processing each dataset element sequentially, which is often stored on

global memory without an adequate structure. This approach significantly limits I/O and

computing performance as data-level parallelism cannot be explored.

Streaming input continuously loads dataset elements from a given input descriptor, sim-

ilarly to mini-batch, until it is signalled to stop. This approach differs from mini-batch as in

the latter the amount of total data to be read is known in advance. The input data reading,

pre-processing and processing have to be managed in run-time, specially when dealing with

continuous processing over a large amount of time. Since the overall dataset size is unknown,

this approach requires careful memory management and efficient processing of the pipeline,

ensuring that both input stream and pipeline computing throughputs are similar, to avoid

2.3. PIPELINED DATA STREAMING 27

exceeding the available physical memory.

The input reading and pre-processing tasks may be different for each scientific field, and

even among different tools within the same field. There is often standards for data file formats

to ease interoperability of different software tools within a field, but each format requires dif-

ferent approaches, and consequently different code, to read the data from a file. This means

that support for batch or mini-batch input reading depends on both the file format and the

libraries to access the data.

Some file formats may also require pre-processing before loading the dataset from a file

to a data structure on memory. The most common pre-processing relates to file decompres-

sion, where the data on the files need to be expanded before being moved into a data struc-

ture. This operation is often specific to a given file format, and not directly related to popular

compression formats, such as zip or tar. For instance, the root file format, from the high en-

ergy physics ROOT framework, uses data compression. Applications that use root files need

to expand its data before storing it into data structures on memory.

The processing of the dataset is based on passing each independent dataset element

through a pipeline of tasks. In each task the data can be processed by an algorithm that

may output a given result, may also modify the dataset element and/or may be filtered out

by an evaluation of its characteristics or as the algorithm output. A dataset element that has

been filtered out is not further processed by subsequent tasks in the pipeline. The pipeline

processing of this type of applications is further detailed below (section 2.3.1).

Data stream applications often save information about the dataset elements that are pro-

cessed by specific tasks (and/or their output) and by the whole pipeline. These results are

saved in specific data structures during the processing of the dataset, which are written into

files when the application finishes executing. In the case of scientific computing, these files

usually follow a format specific to each scientific field and are handled by the same libraries

that are responsible for reading the input files.

There is no standard for input and output file formats for pipelined data stream appli-

cations. This may introduce some limitations to the management of simultaneous I/O and

pipeline processing, since a parallelisation strategy must be either fine tuned for each appli-

28 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

cation or flexible enough to work with a wide range of applications.

A scientific data analysis is one of the most common types of pipelined data stream appli-

cations. It is a process that converts raw data, often obtained through experimental measure-

ments in a scientific environment, into useful information to monitor data, test hypotheses or

theory validation. This type of applications is developed by non-computer scientists, which

are usually self taught programmers, and performance of the code is not their focus when

creating algorithms and data structures.

A wide set of applications display the structure described in this section, such as database

querying engines [11] and data streaming on compute servers and mobile and embedded

devices [12]. Several scientific fields require pipelined applications with this structure. The

high energy physics community relies on these data analyses, where a study of each physics

channel requires a specific application to be developed. These analyses mostly filter and pro-

cess data gathered from several experiments worldwide, such as the Large Hadron Collider at

CERN [32], which has more than 600 institutes with thousands of researchers associated, the

SNO+ Experiment at the SNOLAB Collaboration [33] and the LUX Dark Matter Collaboration

[34]. The cosmology community often uses these analyses to find objects of certain charac-

teristics, discarding most of the gathered data. Such is the case of the code being developed at

the Pierre Auger Observatory [35], which includes more than 500 researchers, among others.

2.3.1 Computational Characterisation

In pipelined data stream applications, each dataset element, typically a n-tuple of measured

data with no dependencies among different n-tuples, is submitted to a pipeline of proposi-

tions. In this dissertation a proposition is considered as a computational task that may be

followed by an evaluation of a criterion to decide if the dataset element is discarded or fur-

ther processed by the next proposition. Figure 2.6 shows a typical structure of a pipelined

data stream application using a batch and mini-batch approach.

Data stream applications usually have irregular workloads: the pipeline processing time

for each dataset element is variable as it may be discarded by a proposition at any pipeline

stage. The execution time of each individual proposition also depends on the computational

2.3. PIPELINED DATA STREAMING 29

task, whose complexity may vary according to different dataset properties, and/or on mem-

ory access penalties. It is common to have several orders of magnitude separating the execu-

tion time of the simpler from the most complex tasks in the same pipeline.

Figure 2.6: Structure of a typical flexible pipelined data stream application using a batch (top)
and mini-batch (bottom) input strategies.

Pipelined data stream applications can be categorised according to their computational

characteristics:

I/O-bound: the application performance is limited by the I/O latency and/or bandwidth.

The pipeline does a very small amount of computation, either because the dataset ele-

ments are filtered out at its beginning or the tasks do little to no computation.

Memory-bound: the application performance is bottlenecked by the memory latency or

bandwidth. Latency-bound applications require small amounts of information of the

dataset element, often accessing it in irregular patterns that prevent data prefecthing.

Applications limited by memory bandwidth require large amounts of information per

dataset element, often accessed in regular patterns. Both perform a low to moderate

amount of computation (less than 50% of the overall applications execution time).

Compute-bound: the application performance is limited by the computing power of the

30 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

processing units. These applications perform a large amount of complex computations

for most dataset elements.

A single application may also be I/O-, memory- and compute-bound depending on the

dataset that it is processing. Consider an application with two pipeline stages: the first, p1,

is very fast and evaluates a given characteristic of the dataset element. The second, p2, does

a large amount of computation and does not evaluate any criteria. If 90% of the dataset el-

ements in an input file are filtered out by the first proposition, the application will be I/O-

bound. However, if only 20% are filtered out, 90% of the dataset reaches the second proposi-

tion, making the application compute-bound. If the first proposition filters out around 50%

of the dataset, the application may be memory-bound.

The order of the propositions in the pipeline flow may have some context to the devel-

oper but it is not guaranteed that it is the most computationally efficient. Propositions with

long execution times might be placed earlier in the pipeline, while propositions that filter out

more dataset elements might be executed in later stages, leading to execution inefficiencies.

Considering the previous example, if the proposition p2 was placed first in the pipeline, every

dataset element would be processed by it. However, most of the dataset elements would be

later filtered out by p1, meaning that most of the computation performed by p2 would be dis-

carded. If p1 is placed before p2, only a small amount of dataset elements will be processed

by p2, thus decreasing the overall execution time of the application.

An adequate ordering of the pipeline propositions may have a significant impact on the

application performance, specially for compute-bound code. However, the user has to profile

the code with a dataset indicative of what will be used when the application is in a production

environment to order the pipeline manually. Manual tuning of the propositions order in the

pipeline is usually not feasible, since:

• Input data files often contain datasets whose characteristics vary considerably, which

has a direct impact on the pipeline computational performance. An evaluation of the

pipeline performed with a given test dataset may provide an order that is not suited for

the data processed in a production environment.

2.3. PIPELINED DATA STREAMING 31

• Propositions may have complex dependency chains among themselves. Reordering

them must have these dependencies into account, which may be difficult on pipelines

with large amounts of propositions, without an adequate tool.

• The developer must have experience and expertise to perform this evaluation accu-

rately.

An automated strategy to reorder the propositions in the pipeline during the application

execution could overcome these limitations. It should operate transparently to the user and

dynamically adapt to changes in the pipeline behaviour caused by the dataset characteristics.

2.3.2 Compute Intensive Tasks

Pipelined data stream applications, specifically scientific data analyses, often use a small pool

of math and physics related functions, independently of the scientific field. These functions

range from linear algebra, used for operations on vectors and matrices, numerical solvers,

used to approximate solutions of equations, to Monte-Carlo methods. There are several li-

braries that provide efficient implementations of these routines, such as BLAS [36], MKL [37],

ScaLapack [38] and OpenFoam [39]. These routines are often compute-intensive, and may

be responsible for a major portion of the applications execution time.

There are two key factors to take into account when using these functions in scientific

code:

Implementation efficiency: the performance of the implementation of a routine is crucial.

The developer must avoid using libraries whose code does not take advantage of the

available computational resources, as it may have a significant impact on the applica-

tion execution time.

Adequate usage: the developer must have an idea of the underlying mathematical/physics

methods implemented by the library functions, so that he/she may use the routines

efficiently. For instance, excessive reset of the seed of a pseudo-random number gen-

erator with an extremely large period may have a significant impact on the application

32 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

performance [16]. Also, adequate management of calls to these routines and offload to

accelerator devices may provide significant performance improvements (this is further

detailed in Subsection 3.3.2).

While it is crucial to use efficient implementations of compute intensive routines, an ad-

equate usage of such algorithms has been proven to have a significant impact on an applica-

tion performance. This can be achieved by either using appropriate management of these

routines at software-level, or using hardware accelerators specialised for specific types of

compute intensive workloads. For instance, matrix computation is often offloaded to Graph-

ics Processing Units (GPUs), by using libraries that can manage data transfers between mul-

ticore and GPU devices and implement the required matrix operations. This can be as easy

as calling any regular function, which internally manages memory transfers and executes the

code on the accelerator device.

Offloading compute intensive tasks to accelerators, a task currently simplified due to spe-

cific libraries, may provide a significant improvement to the performance of an application.

However, offloading code to an accelerator may lead to an inefficient use of available com-

puting units (cores) in the server. Applications are often executed on a multicore device or on

an accelerator, but not on both, as this often requires the developer to explicitly manage and

schedule simultaneous computing on both devices. It requires an high degree of expertise in

parallel computing as an application has to be designed and developed from its conception

with interleaved computation in consideration. This may require using complex frameworks

and/or libraries to run code and balance the workload on both devices simultaneously. Fig-

ure 2.7 presents a schematic representation of the offload without and with interleaving.

Finally, it is not enough to run the code on both multicore and accelerator devices. Ide-

ally, the code should take advantage of both all cores in a multicore device and the available

resources at the accelerator. An application performance can be significantly improved by

minimising the downtime of the available computing resources.

2.3. PIPELINED DATA STREAMING 33

Figure 2.7: Processing a dataset element using a simple offload (top) and an interleaved of-
fload (bottom).

2.3.3 Parallelisation Approaches

Developers of pipelined data stream applications, specially non-computer scientists, often

resort to two basic approaches to parallelise the code. The first targets shared memory en-

vironments, using multiple threads, while the other focus on distributed memory environ-

ments, using multiple processes. Figure 2.8 presents a schematic representation of these ap-

proaches to process multiple input batches.

Figure 2.8: Schematic representation of the conventional multithread (top) and multiprocess
(bottom) parallelisation strategies for scientific code, using 3 threads t X and processes p X .

In a multithread approach the code in execution (a process) contains sequential and par-

allel sections. The pipeline can be simultaneously applied to different independent dataset

34 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

elements using multiple threads, through a Map-Reduce strategy. The dataset is mapped into

various threads, using any given workload balance strategy, processed by the pipeline, and

the results can either be stored in a shared or a thread private data structure. A shared data

structure requires managing concurrent accesses of different threads, which may be a signifi-

cant bottleneck to performance, while using a thread private structure requires a reduce pro-

cedure after processing the dataset, to merge and output the results. The input file reading,

pre-processing and data structure creation (addressed as data setup) is usually performed

sequentially, due to either limitations of the library used to read the files and/or it requires

the developer to code a complex implementation to parallelise these tasks. This parallelisa-

tion approach is best suited for compute-bound applications, as only the computation of the

pipeline is parallelised.

The multiprocess parallelisation relies on using independent parallel processes, each im-

plementing sequential code, to execute both the data setup and the pipeline processing of

different dataset elements. One approach is to implement a multiprocess parallelisation on

the application, which may require the integration of a workload balance strategy to dis-

tribute the dataset elements among the processes and a reduction of the final results, simi-

larly to the multithread parallelisation. An alternative approach is to execute the binary of the

application multiple times with different input data files. The final results must be merged

by an external tool after executing all instances of the application. This requires an adequate

balancing of the amount of data in each of the input files, so that the various processes have

similar execution times. However, statically dividing the data before the application execu-

tion is not guaranteed to ensure proper balancing of the workload, since different charac-

teristics of the data may cause the application to vary its execution time. This is the most

common alternative as it does not require the user to have any expertise in developing par-

allel code. This parallelisation approach is best suited for compute-bound applications, but

can also benefit memory- and I/O-bound applications to a lesser extent.

Both multithread and multiprocess approaches are not adequate to explore the compu-

tational characteristics of pipelined data stream applications. They do not take into account

efficient data setup, adequate ordering of the pipeline, dynamic workload balance according

2.4. SOFTWARE FOR EFFICIENT PARALLEL EXECUTION 35

to the irregularity of the pipeline execution, and the complexity of the available computa-

tional resources (as seen in sections 2.1 and 2.2), which are crucial to improve the efficiency

of these applications.

2.4 Software for Efficient Parallel Execution

The development of code for homogeneous or heterogeneous servers has to take into con-

sideration different aspects of the computing and memory hierarchies of the server devices.

For instance, in homogeneous servers all devices have the same computational through-

put on a shared memory environment, which often does not require complex task and data

scheduling algorithms. Alternatively, heterogeneous servers use devices with different com-

putational throughputs, which depend on the type of code, in a distributed memory address

space. Different code versions often have to be developed according to the architecture and

programming paradigm of the target hardware device. Scheduling tasks and data on these

servers requires the evaluation of many hardware characteristics during the application run-

time.

The following subsections present the most relevant libraries and frameworks for efficient

parallelisation and scheduling of code on homogeneous and heterogeneous servers, with a

focus on what may be useful for pipelined data stream applications. Schedulers designed for

the reorganisation and parallelisation of tasks in pipelined data stream applications are also

presented.

2.4.1 Libraries and Schedulers for Efficient Parallel Computing

OpenMP and OpenMPI

OpenMP [40] is one of the most popular high level libraries for parallel programming in ho-

mogeneous servers. The OpenMP API is designed for multi-platform shared memory mul-

tithread programming in C, C++ and Fortran, for most multicore architectures available. It

is portable, as it is implemented by each compiler, its performance is scalable for simple

applications, and it aims to provide a simple and flexible interface to develop parallel appli-

36 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

cations, even for the most inexperienced developers. Its scheduler is based on a work sharing

strategy, where a master thread spawns a set of worker threads to simultaneously compute a

task, or different tasks, on a shared data structure. This approach is also efficient for irregular

workloads. The latest OpenMP version also supports parallelisation on GPU devices, with the

integration of simple offloading directives for code that can be executed either on multicore

or GPUs. However, there is yet no support for simultaneous execution and load balancing

among multicore and accelerator devices.

The Open Message Passing Interface (MPI) [20] is a specification designed by a consor-

tium of both academic and industry researchers, and aims to provide a simple API for pro-

cess based parallel programming in distributed memory environments, typical in computing

clusters. It relies on point-to-point and group messaging communication, and is available for

C, C++ and Fortran.

OpenMPI is often used in conjunction with a shared memory parallel programming API,

such as OpenMP, where it handles work sharing among computing servers, while OpenMP

ensures an efficient parallelisation inside each server. The OpenMPI standard does not spec-

ify the implementation of any scheduling strategies. Developers have to implement data and

task scheduling strategies, explicitly code the communication of data and tasks, and create

and manage an adequate amount of processes for the applications and servers used. A high

degree of expertise is required to develop efficient parallelisations for complex applications.

CUDA

The Compute Unified Device Architecture (CUDA) is a computing model for hardware ac-

celerators launched in 2007 by NVidia that aims to provide a framework to program devices

with a hardware architecture similar to NVidia GPUs. It allows developers to use C with some

extensions to program CUDA capable GPUs, which it converts into a specific instruction set.

In CUDA, a parallel task is constituted by a set of CUDA threads that compute the same in-

structions in each clock cycle on different data, following a SIMD execution model.

The CUDA thread is the most basic data independent parallel task, which can run simul-

taneously with other CUDA threads, and it is organised in a block-grid hierarchy. A block is a

2.4. SOFTWARE FOR EFFICIENT PARALLEL EXECUTION 37

set of CUDA threads that is allocated by the global scheduler to a specific streaming multipro-

cessor. The thread blocks are organised in a grid, which represents the whole parallel kernel

(algorithm coded for the GPU). Note that both the blocks and the grid sizes must be defined

by the developer according to the algorithm and dataset to process, within the maximum

values supported by each different GPU architecture.

The code in a kernel indicates the task that a single thread will execute on a specific Sec-

tion of the dataset, without the need for explicit parallelisation directives. The CUDA run-

time engine creates a copy of the kernel and assigns it to each thread that will execute. Ef-

ficient parallelisation of tasks in CUDA should be based on computing simple tasks to large

amounts of data, ideally using thousands of threads. Such large amount of threads requires

a very large register bank but it contributes to guarantee that at any point in time there is

a subset of these threads that has all the data it needs to execute. This strategy hides the

long memory access latencies and saves chip area by including a simpler memory hierarchy

on these devices. However, a high degree of expertise is required to develop efficient CUDA

code.

CUDA also provides an API for C, C++ and Fortran, which is used to launch the kernels on

the GPU and transfer memory between host and GPU. An application that uses CUDA must

be compiled using the NVidia Compiler, which translates the kernel into GPU instructions

and uses an user-defined compiler for the rest of the non-GPU code.

NVidia provides a set of libraries that supply efficient implementations of functions re-

quired in a wide range of scientific applications, which can be easily used without any exper-

tise on parallel computing. The most popular are cuBLAS [41], cuSPARSE [42], cuSOLVER and

cuDNN [43]: all automatically handle kernel execution and memory transfers of well-defined

datasets between multicore and GPU devices. cuBLAS is a library for basic linear algebra

operations, whose implementation is based on the BLAS library for multicore devices. cuS-

PARSE is similar to cuBLAS but it is optimised to handle sparse matrices. cuSOLVER is based

on both cuBLAS and cuSPARSE and implements complex operations on matrices, such as

factorisation, permutation and numerical solver functions. cuDNN implements primitives

for deep neural network training and inference, which are based on matrix operations.

38 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

OpenACC and OpenHMPP

OpenACC [44] is a framework to efficiently parallelise code in heterogeneous servers with ac-

celerator devices. It is originally designed to simplify the programming paradigm for servers

with GPU devices by abstracting the memory management, kernel creation and code execu-

tion on the GPU. This framework focus on creating an abstraction of the GPU device to the

developer, as well as ensuring functional portability across different heterogeneous servers as

implemented by the compilers, rather than on ensuring efficient execution of the code. It is

designed for C, C++ and Fortran and provides both an API and compiler directives. It allows

only different tasks to run on both multicore and GPU devices simultaneously. OpenACC

does not provide any task or data schedulers, as it does not allow a task to process different

data on multicore and GPU devices simultaneously. The current specification addresses both

NVidia and AMD GPUs, as well as the Intel Xeon Phi Knights Corner coprocessor.

OpenHMPP [45] is a standard that aims to provide an abstraction layer between the hard-

ware of heterogeneous servers and the developer to ease the development of parallel appli-

cations, similarly to OpenACC. It only supports GPU devices. In the current specification,

OpenHMPP uses a superset of the OpenACC directives to offload code to the GPU and man-

age the data transfers. It supports asynchronous task execution, but is not possible to use this

framework to execute tasks on multicore and GPU devices simultaneously. This standard is

only implemented by the CAPS compilers and PathScale ENZO Compiler Suite.

Schedulers for Pipelined Data Stream Applications

Scheduling traditional pipelined applications into available parallel resources has been ad-

dressed by several list schedulers, as most list schedulers can be adapted to the characteristics

of this workload. However, the pipelines in pipelined data stream applications have specific

characteristics, such as pipeline tasks filtering out dataset elements, that may limit the us-

ability of typical list schedulers. The most relevant tools and libraries that provide schedulers

for pipeline task reordering and parallelisation are presented next.

The authors of [46] present a scheduler to reorder the pipeline execution of database

queries, where sub-queries that produce a smaller amount of relevant tuples are processed

2.4. SOFTWARE FOR EFFICIENT PARALLEL EXECUTION 39

first. It does not support parallel execution of sub-queries. However, this approach only takes

into account the amount of tuples each sub-query produces to calculate a weight, discarding

their individual execution time. The proposed scheduler reorganises the sub-queries, enforc-

ing simple barriers when the resulting tuples of two sub-queries have to be processed by a

third sub-query. This approach does not ensure that dependencies between two sub-queries

are respected, which is crucial for pipelined data stream applications. Even for applications

with no pipeline dependencies, this approach may produce inefficient pipeline orders when

each of the pipeline stages have different execution times. It is not clear that sub-queries

that operate on different database tables (i.e., datasets) are managed and executed simulta-

neously by the proposed scheduler.

The authors of [47] present a scheduler for pipelined streams that reorders simple filters

at run-time, while adapting the order to changes in their filtering ratios. This approach takes

into account the correlation of the filtering ratios of stages in a given order to provide a better

prediction of the best possible pipeline order. It performs synchronous data join operations

among various filters, but does not consider their execution time, similarly to [46]. It also

assumes that there are no direct dependencies among stages, which can greatly limit the util-

isation of this scheduler in most pipelined data stream applications. Finally, this scheduler

does not support parallel execution of the pipeline or its stages.

The authors of [48] propose a scheduler that mixes task and data parallelism for pipelined

streaming services. Their approach rely on StreamIt, an architecture independent language

to program streaming applications, to which they integrated a map-reduce data parallelism

approach, and divide the pipeline in independent sub-pipes that are mapped to different

computing cores in a device, similarly to instruction pipelining in the ALUs of multicore de-

vices. This approach assumes that data is always processed by the whole pipeline, which is

not always ideal for pipelined data stream applications. It may provide an efficient schedul-

ing strategy to parallelise this type of applications, but the lack of pipeline reordering may

greatly affect its performance, as reducing the amount of data processed by compute inten-

sive pipeline stages is crucial to reduce the overall application execution time.

The authors of [49] propose a Predict Earliest Finish Time scheduling algorithm to par-

40 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

allelise the execution of stages in a pipeline (defined as graphs of tasks) on heterogeneous

servers. It considers an optimistic cost table, which considers the weight of the pipeline

stages and the attempts to predict the impact that a change to the order will have on the

pipeline performance, taking that prediction into consideration to produce a final weight.

The order of the pipeline stages execution is defined based on these weights. This approach

assumes that all stages of the pipeline are executed for each dataset element, and poses the

same limitations of [48] for pipelined data stream applications.

The authors of [50] propose a programming model to parallelise and schedule the execu-

tion of irregular pipelines in stream applications, specifically designed for highly parallel het-

erogeneous servers. This approach dynamically adapts to changes in the execution times of

pipeline stages during the application execution, resorting to statistical information to proac-

tively react to the irregularity of the pipeline processing. It considers that the whole pipeline

is always processed, which is the case of most pipelined data stream applications.

The authors of [51] propose a set of algorithms for list scheduling of tasks in multicore

devices. However, the schedulers support parallel tasks, whose implementation by the user

may have a direct impact on the overall application performance, by adapting task distribu-

tion according to the computing device throughput on these tasks. These algorithms reor-

ganise tasks in a pipeline according to their inter-dependencies, but assume that none filters

out dataset elements, similarly to other schedulers, and was only tested in multicore devices.

The authors of [52] propose RaftLib, a C++ template library for efficient parallel process-

ing of stream applications. This library provides an extensive amount of features required

to build a data stream application, allowing users to develop simple processing kernels, and

providing primitives to build a computing pipeline with those kernels. It provides several ap-

proaches to define forks, joins and synchronisations among kernels, similarly to [46, 47], but

does not focus on data and task scheduling.

The authors of [53] present StreamBox, an out-of-order data parallel engine with parallel

execution of pipelines on independent data streams. This tool is the one that is the closest

to the HEP-Frame scheduling pipeline strategy presented in this dissertation. However, this

tool displays yet a set of limitations that makes it unsuitable for the specific type of pipeline

2.4. SOFTWARE FOR EFFICIENT PARALLEL EXECUTION 41

data stream applications this dissertation addresses:

• Data parallelism is achieved by simultaneously processing concurrent input streams,

as well as batches of data inside each stream. However, out-of-order pipeline paral-

lelism does not include parallel execution and reordering of pipeline tasks. Instead,

StreamBox improves the processing latency of specific data tuples by reordering and

processing data in parallel inside data batches.

• StreamBox assumes that all tasks in a pipeline are executed and no data is filtered out,

while HEP-Frame tackles performance issues where data may not be processed by the

whole pipeline, which increases workload irregularity and is harder to schedule effi-

ciently.

• StreamBox focus on scheduling according to the characteristics of the input data, as-

suming that the time to process the pipeline is negligible. Most data stream applica-

tions do not behave like this, including those in the HEP-Frame case studies.

• StreamBox provides a set of operators to manage multiple concurrent streams, such as

merge and synchronise, as well as data reordering based on time stamps, which is out

of the context of the target applications for this work.

2.4.2 Frameworks for Efficient Parallel Computing

StarPU [54] and Legion [55] are the closest frameworks to HEP-Frame: both target the de-

velopment of efficient code for heterogeneous platforms, schedule data and task processing

among threads and support efficient execution of irregular tasks. However, these tools were

designed for advanced developers and lack support for flexible pipelines, where dataset ele-

ments may be discarded in intermediate pipeline stages. Other tools, such as OmPSS [56] and

DAGuE [57], are available to specific balance the workload of irregular pipelined code, but do

not provide multiple scheduling options and other features that are available in StarPU and

Legion, and also lack support for flexible pipelines. OmPSS and DAGuE are the alternative

tools that may be best suited for regular pipelined data stream applications.

42 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

StarPU

StarPU is a unified run-time system that consists of both compiler directives and an API that

aims to allow developers to efficiently map parallel code into heterogeneous servers by ab-

stracting the architecture details of these systems. This framework frees the developer of the

workload scheduling and data consistency inherent from the distributed memory environ-

ment of heterogeneous servers. Task submissions are handled by the StarPU task scheduler,

and data consistency is ensured via a data management library.

StarPU employs a task based approach to the programming model of an application,

where the user supplies a set of kernels for each device that can be processed in parallel.

Based on the provided kernel implementations (i.e., can only run on CPU, GPU, or both) and

scheduling strategy, the framework handles in which device and how much data each task

will compute.

StarPU attempts to improve the performance of an application by carefully considering

and attempting to reduce memory transfer costs among multicore and accelerator devices.

It provides a refinement of the traditional queue-based scheduling strategy by using task pri-

ority information to select which task to process among all tasks in a ready queue. However,

to obtain an efficient scheduling each task priority must be defined and updated by the user

during the application execution, this requires comprehensive knowledge of the problem in

order to define an adequate heuristic that provides efficient data and task scheduling among

the computing devices.

The performance model differs among different schedulers implemented in StarPU, but

most track the tasks execution time on the devices, or use the user supplied weight function

for the tasks. Schedulers use a user defined calibration to start the execution, and after 10 ex-

ecutions of each task it starts to perform a real-time calibration with the available statistics.

This may translate in an inefficient usage of the system resources at the start of the applica-

tion, but ensures that it tends to improve as the application runs.

The memory consistency is automatically ensured by the framework, as it transfers the

data asynchronously without the developer interaction. The data dependencies are deter-

mined by the scheduler, with some interaction of the developer, when declaring if a data

2.4. SOFTWARE FOR EFFICIENT PARALLEL EXECUTION 43

structure is read/write or both. However, this requires the users to define their dataset struc-

tures according to the constructors and limitations provided by StarPU. The granularity of

the data and task distribution among devices must be statically defined by the user.

StarPU requires that applications use its data structures and poses many limitations to

the tasks code organisation and behaviour. It allows little flexibility in the overall application

structure, which restricts the feasibility of porting existing code, specially if performed by a

developer with little experience with this framework. StarPU has a steep learning curve that

hinders its adoption by users with little expertise in high performance computing.

Legion

The Legion framework is a data-centric programming model for heterogeneous platforms. It

relies on an extensive configuration of a pre-defined data structure at must be adopted by the

applications to provide high performance parallelisation and load balancing for both multi-

core and accelerator devices. It is targeted for users with extensive programming experience

for heterogeneous servers with MPI, OpenCL and CUDA, and for users that aim to create high

level libraries optimised separately for each architecture.

The developer needs to use a set of specific Legion data structures to ensure a subset of

the provided data properties, such as partitioning and coherence. These properties need to

be explicitly managed so that the framework is able to achieve an efficient distribution of the

data among the computing devices. With the specified data properties, Legion uses auto-

mated mechanisms to perform the execution parallelisation, data scheduling and memory

transfers of a single task on multiple devices. Similarly to StarPU, the user should supply the

framework with an implementation of the parallel task for each computing device to be used.

The framework uses logical regions to abstract the data handling, which can be used by the

developer to enforce dependencies among different tasks. However, simultaneous execution

of different tasks on the same data structure, which occurs in pipelined applications, is not

the focus of this framework.

Legion handles parallel execution of irregular workloads by adapting the data chunk size

scheduled for each computing device during the application execution. It dynamically parti-

44 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

tions the data according to an history of the execution time of the tasks for each device. The

algorithm for slicing the data structure must be provided by the user.

Applications can be coded in the provided Legion language or in C++, which integrates

with its run-time API. The framework also provides a low level C++ API to allow programming

for each specific architecture. It can be used in a shared memory mode, or in a distributed

memory configuration that supports execution on large heterogeneous clusters. Legion has

a steep learning curve, similarly to StarPU.

OmPSS and DAGuE

OmpSS is a pragma based programming model that extends OpenMP to support code of-

fload to accelerator devices and asynchronous parallelism, which allows easy integration in

existing codes by users with some experience in parallel programming. It is based in a task

clause that defines the parallel region, in which data dependencies and transfers to and from

accelerator devices is specified. It supports OpenCL and CUDA capable devices, as well as the

Intel Xeon Phi Knights Corner coprocessor. However, OmpSS is limited as its parallelisation

needs to be tuned for each application code and requires, in addition to other limitations in

scheduling common to other pragma based programming models.

DAGuE is a run-time system that dynamically manages the execution of tasks, which are

represented by directed acyciclic graphs, on multicore devices. It relies on knowledge of the

application obtained in a pre-compilation process, such as task dependencies and order-

ing. Its workload scheduling is based on a simple work stealing strategy. However, flexible

pipelined data analyses tasks can only be represented by directed cyclic graphs, as detailed

in Section 3.2.

2.5 Random Number Generation

Random numbers are used in a wide spectrum of applications where unpredictability is re-

quired, including statistical data sampling, scientific computing, gaming and cryptography.

Generally, pipelined scientific data analyses, a subset of pipelined data stream applications,

2.5. RANDOM NUMBER GENERATION 45

often require large amounts of random numbers, which generation represent a significant

amount of the execution time. Different applications often require specific properties from

random numbers, for which different random number generators may be used. In the con-

text of computer science, these can be broadly classified as True Random Number Generators

(TRNGs) or Pseudo-Random Number Generators (PRNGs).

TRNGs are based in physical random processes to generate random bit strings. The most

common example of a TRNG is the coin toss of a symmetrical coin, where one can expect

either heads or tails with a 50% certainty. A set of coins, or a series of coin tosses, can be used

to generate a random sequence of bits. However, coins are not perfectly balanced and there

is a small probability of landing on its side, slightly deviating the 50-50 chances of expecting

heads or tails. Post-processing may be used to remove the bias of these processes. There are

no correlations among generated numbers but these generators are usually slow, not suited

for large scale computing and their results cannot be replicated, which makes debugging

code harder.

PRNGs attempt to approximate key properties of truly random numbers, such as no rep-

etition of sequence of values for a long period and no correlation between generated num-

bers. However, the generated values are not truly random as they are determined by an initial

value (seed). A proper mathematical analysis of the generator algorithm is required to assess

its quality and if they are close enough to truly random for the specific use that they were

designed for. The main benefit of this type of random generator is their performance, which,

depending on the algorithm, may scale with the increase of available cores. The use of a seed

ensures that the results are reproducible, which eases the process of debugging code. This

type of generators are mostly used for scientific applications due to its higher performance

and adequate mathematical properties. However, most PRNGs can only generate sets of uni-

formly distributed PRNs, which may require a transformation algorithm to convert them into

any specific distribution.

A short introduction to the most popular PRNGs, distribution transformations and li-

braries follows through the next subsections.

46 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

2.5.1 Popular PRNG Algorithms

There is a wide range of algorithms to generate PRNs currently available, each with strengths

and weaknesses that may make them best suited for different uses. The statistical quality of

a PRNG randomness is usually evaluated by a set of benchmarks, such as the Diehard [58]

and TestU01 [59] suites. An ideal PRNG has an infinite period, covers the entire range of

possible PRNs (usually 32/64-bit numbers), and has no correlation between generated PRNs.

Other mathematical characteristics may be equally important, but are not as relevant in the

scientific community when choosing a PRNG.

The scientific community has been using several PRNG algorithms, such as the popular

r1279 and Wichmann-Hill PRNG available in GSL [60], MKL [37] and NAG [61], but one stands

above all other in popularity: the Mersenne Twister [62]. This algorithm was developed in

1997 and features a period of 219337°1, passes most statistical tests, and it is extremely fast to

generate both 32 and 64-bit numbers. This generator is also implemented in most program-

ming languages and is available in most scientific computing libraries. It has some limita-

tions, such as low throughput, but they are often overcome by alternative implementations

of this algorithm, which take advantage of vector/SIMD instructions, GPU architectures and

multithreaded environments.

Recently, the PCG family of PRNGs was proposed [63], claiming better statistical qual-

ity and computational performance, for both single and multithreaded environments. Even

though it is not yet fully accepted by the scientific community, the PCG RXS-M-XS 64 gener-

ator (a Linear Congruential Generator, LCG) will be included in HEP-Frame, as the authors

claims it is one of the best performing PRNGs currently available. Since the PCG generators

only generate uniformly distributed numbers, they will be paired with an efficient implemen-

tation of the Box-Muller algorithm to produce Gaussian distributed numbers.

2.5.2 Transforming Uniformly Distributed PRNs

PRNs are usually generated in an uniform distribution, but other distributions may be re-

quired. Gaussian distributed PRNs are often used in scientific computing, so having PRNG

2.5. RANDOM NUMBER GENERATION 47

implementations that support that functionality is crucial.

Since most algorithms only generate uniformly distributed PRNs, this distribution may

require post processing. One of the most common algorithms is the Box-Muller transforma-

tion [64], which generates a pair of independent Gaussian distributed PRNs based on a set

of uniformly distributed numbers. It is not one of the most computationally efficient trans-

formations, due to its iterative nature and reliance on square roots, logarithmic and trigono-

metric functions.

The Inverse Transform Sampling [65] is a method that transforms uniformly distributed

numbers into any distribution, given its Cumulative Distribution Function (CDF). The CDF

maps a PRN into a probability between 0 and 1 and then inverts this function, providing the

final non-uniformly distributed number. This number can be adjusted to a specific mean and

standard deviation afterwards, as required by a Gaussian distribution. The lack of an analytic

CDF for the Gaussian distribution may affect the algorithm performance, favouring other

transformations such as the Box-Muller. However, current implementations, widely accepted

by the scientific community, use an extremely accurate approximation of the Gaussian CDF,

which is faster than most transformations.

The computational performance of both Box-Muller and Inverse Transform Sampling

methods (with the CDF approximation) will be assessed and evaluated on real scientific case

studies. Other methods could be used, such as the Ziggurat transformation [66], but are not

included in this work as they are not used as often by the scientific community.

2.5.3 PRNG Libraries

Most scientific computing libraries and frameworks provide efficient implementations of a

wide variety of PRNGs. MKL is one of the most popular scientific computing libraries that

offers a wide range of mathematical functionalities. It features several PRNGs, from which

only the Mersenne Twister will be considered as it would be the most likely to be used by the

scientific community. The Box-Muller and ICDF (Inverse Transform Sampling) transforma-

tions are available in this library and will be used to convert uniformly distributed PRNs into

a Gaussian distribution. MKL also provides an implementation of most algorithms that gen-

48 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

erates a batch of PRNs. This library is highly optimised, with multithreaded and vectorized

functions, for most Intel multicore and manycore devices.

The fastest PRNG available in the PCG family, the RXS-M-XS 64 (LCG), will be coupled to

the Box-Muller algorithm to provide Gaussian distributed pseudo-random numbers.

To offload the PRNG to the CPU accelerator the NVidia CUDA toolkit includes a library of

PRNGs, cuRAND [67]. This library provides an efficient implementation of several algorithms

and transformations, from which the most relevant for scientific computing is the Mersenne

Twister algorithm and the Box-Muller transformation.

2.6 Summary

This chapter presented the structure of homogeneous and heterogeneous servers, with a

detailed overview of the hardware architecture of the multicore, manycore and accelerator

devices present in these servers. The advantages and limitations of different hardware ar-

chitectures were discussed, as well as their impact on real world software applications. The

most relevant libraries, frameworks and schedulers for the development and efficient paral-

lel execution of pipelined data stream applications for these servers were presented, with a

description of their programming models, advantages and limitations.

A pipelined data stream application, the target type of applications of the work in this dis-

sertation, is a process, often developed by non-computer scientists, that converts raw data

(often from experimental measurements) into useful information to monitor data, test hy-

potheses or prove theories. Large amounts of experimental data are read in variable sized

chunks or datasets, and placed into an adequate data structure. Three approaches are com-

monly used to input data into a data stream application: in batches, where files containing

large chunks of data are read before processing the dataset; in mini-batches, where dataset

elements are individually read and processed; in streams, where dataset elements are con-

tinuously read and processed until the application is signalled to stop.

Each dataset element read, which usually consists of measured data and is independent

from other dataset elements, is processed by a pipeline of propositions. A proposition may

2.6. SUMMARY 49

be composed by a computational task followed by an evaluation of a criterion. Failing the

evaluation discards the dataset element from the pipeline.

Pipelined data stream applications usually have irregular workloads, as the processing

time of different dataset elements is not constant since they may be discarded at different

points in the pipeline. The execution time of each individual proposition also depends on

the computational task, whose complexity may vary according to different dataset properties

and/or on memory access penalties.

Scientific data stream applications often require large amounts of pseudo-random num-

bers, whose generation may account for a significant amount of its execution time. There are

several algorithms for PRN generation (PRNG) used by the scientific community, each de-

signed for a specific usage and a given statistical quality. The Mersenne Twister is the most

popular PRNG due to its high statistical quality and efficient implementations for multicore,

manycore and GPU devices. Using an efficient implementation of an adequate PRNG may

provide significant performance improvements for pipelined data stream applications.

Optimising the computational performance of pipelined data stream applications re-

quires a high degree of expertise that most computer and non-computer scientists lack. Im-

proving the performance of this type of code poses various challenges:

• Different applications may be limited by different characteristics of the hardware, mak-

ing them I/O-, memory-, or compute-bound. A single application may also be limited

by these different factors, as processing various datasets may require different amounts

of computation. This prevents a single optimisation approach to be useful for every

pipelined data stream application.

• The default order of the propositions in the pipeline may be inefficient. Propositions

with long execution times should be placed in the later stages of the pipeline, while

propositions that filter out more dataset elements should be placed earlier. However,

these characteristics of the propositions cannot be measured prior to the application

execution, as they often vary while processing a dataset and between different datasets.

• Applications often use compute intensive math- and physics-related routines that con-

50 CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS

tribute to a significant part of their execution time. Using efficient implementations of

these routines may not be enough to ensure efficient execution of the code. Adequate

management of data and/or computation of these routines is as important as their im-

plementation, specially when offloading their execution to accelerator devices.

• Simple multithread and multiprocess parallelisation approaches can be implemented

by non-computer scientists. They may work to improve the performance of compute-

bound applications with simple pipelines, but are usually not enough to take advantage

of a server computational resources for most applications, specially if they are I/O- and

memory-bound.

• Optimising a single application for a specific target computing system requires a large

amount of time, which scientists often prefer to spend developing new features and

improving existing algorithms. Moreover, it is common to work with multiple applica-

tions simultaneously, which would require to replicate and tune those optimisations

for every application and computing system.

• Optimisations tuned for a specific application often require modifications to the sci-

entists implementation of some algorithms, which if performed by a third party may

jeopardise the scientists confidence on the correctness of the code. It also hinders the

maintenance and upgradability of the existing code.

Chapter 3

HEP-Frame: a Highly Efficient

Pipelined Framework

This chapter presents HEP-Frame, a framework to aid the development and efficient

execution of pipelined data stream applications on homogeneous and heterogeneous

servers. The structure of the framework is detailed. A simple demonstration on how

interact with the HEP-Frame tools and how to develop the code for the key components

of an application is also provided.

The multi-layer scheduler, a key component of HEP-Frame to improve the perfor-

mance of pipelined data stream applications, is presented. The parallelisation strategies

implemented in each scheduler layer, and how they influence the performance of these

applications, are described in detail. Finally, the mechanisms used to parallelise propo-

sition on manycore servers and co-processors, as well as offload PRNG to manycore and

GPU accelerators, are presented.

51

52 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

HEP-Frame is a user-centred framework to aid scientists to develop applications to anal-

yse data from a large number of streamed dataset elements, with a flexible pipeline structure.

It not only stresses the interface to domain experts so that code is more robust and is devel-

oped faster, but it also aims high-performance portability across different types of parallel

computing platforms and desirable sustainability features. This framework aims to provide

efficient parallel code execution without requiring user expertise in parallel computing.

In data analysis, non-computer scientists are faced with applications that inefficiently

handle data processing. Since optimising applications is very time consuming and the main

goal of non-computer scientists is to obtain results relevant to their scientific fields, often

within strict deadlines, improving the performance of the code is usually overlooked. Hav-

ing a framework dedicated to aid code design and development, through the automation of

repetitive tasks, while ensuring efficient data processing, is key for many scientific fields.

Frameworks to aid the design and deployment of scientific code usually fall into two cat-

egories: (i) resource-centred, closer to the computing platforms, where execution efficiency

and performance portability are the main goals, but forces developers to adapt their code

to strict framework constraints, being the most relevant StarPU [54]; (ii) user-centred, which

stresses the interface to domain experts to improve their code development speed and ro-

bustness, aiming to provide desirable sustainability features but disregarding the execution

performance.

HEP-Frame attempts to merge this gap so that users develop code quickly and do not have

to worry about the computational efficiency of the code. It handles (i) by ensuring efficient

execution of applications according to their computational requirements and the available

resources on the server through a multi-layer scheduler, while (ii) automatically generating

code skeletons, transparently managing the data structure and automating repetitive tasks.

This framework provides a multi-layer scheduler that provides task and data level par-

allelism for pipelined data stream applications on heterogeneous servers. It also provides

an API that provides efficient implementation and management of pseudo-random number

generators (PRNGs) for multicore and accelerator devices. The key performance features of

HEP-Frame are:

3.1. HEP-FRAME STRUCTURE AND USABILITY 53

• Balancing the input data among multiple multicore and/or manycore servers (with

Xeon Phi Knights Landing, KNL).

• Scheduling and execution of the loading and pre-processing of raw data into HEP-

Frame data structures (the data setup) in parallel with the pipeline execution, through

a dynamic adaptation of the number of threads assigned to read and to process the

pipelined data stream.

• Adaptive reordering of the pipeline execution flow and the distribution of its stages

across heterogeneous computing resources, exploring parallel execution of indepen-

dent tasks in a pipeline (task parallelism) with multiple dataset elements/input streams

(data parallelism).

• Balancing the data and workloads among the computing devices of heterogeneous

multicore servers with accelerators, such as the manycore coprocessor Intel Xeon Phi

Knights Corner (KNC) or GPU devices.

• Managing efficient implementations of several PRNG algorithms on multicore devices,

KNC coprocessors and NVidia GPUs, using a single and dual-buffer approaches.

Next subsections address the HEP-Frame usability (the skeleton generator and associated

pipeline inter-dependencies, the data structure setup, plug-ins to store results), a detailed

description of the multi-layer scheduler and other performance features.

3.1 HEP-Frame Structure and Usability

HEP-Frame aids the development of pipelined data stream applications by providing an user-

friendly code skeletons and transparently managing common repetitive tasks. The frame-

work automatically manages the efficient execution of the code across different types of par-

allel computing platforms, from laptops to clusters, without requiring the user to tune the

code for each platform.

54 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

The most recent version of HEP-Frame can be downloaded at https://bitbucket.org/

ampereira/hep-frame. After unziping the downloaded file, the HEP-Frame directory is cre-

ated with 3 basic sub-directories (lib, scripts and tools) and an additional Analysis directory

to store the user applications.

3.1.1 Initial User Interaction

HEP-Frame should be downloaded and decompressed into the user directory where it will

reside. Figure 3.1 presents a schematic representation of HEP-Frame directory organisation,

where blue directories are standard for every installation of the framework, green directories

contain plugins for a specific scientific field, and orange directories are automatically created

for every data stream application.

Figure 3.1: Schematic representation of the HEP-Frame directory structure.

The four key directories are:

tools: this directory holds the HEP-Frame and external tools required at compile time and

may contain other field-specific compatible tools. HEP-Frame has four tools, which

are used when creating and compiling a new pipelined data stream application (later

detailed in Subsection 3.1.2).

lib: this stand-alone directory holds all the specific code and library files of the HEP-Frame

core components.

https://bitbucket.org/ampereira/hep-frame
https://bitbucket.org/ampereira/hep-frame

3.1. HEP-FRAME STRUCTURE AND USABILITY 55

scripts: this directory holds all required scripts for internal HEP-Frame usage, framework

setup, analysis creation, pre-processing and compilation. The user should only interact

with a pre-defined set of scripts (see below).

Analysis: this directory is automatically created when the user creates his/her first appli-

cation. It automatically stores all code files and user generated in a sub-directory with

the application name, which contains the typical src, bin and build directories. Ap-

plications may be shared among users by copy-&-paste the respective directory.

HEP-Frame provides three key scripts for the user to interact with, stored in the scripts

directory: install.sh, update.sh and newAnalysis.sh.

The install.sh script installs the HEP-Frame core components and compiles the tools

in the tools folder. The framework requires that the BOOST library is installed on the system,

as its core depends on several functionalities provided by this library.

Pre-defined optional dependencies can be set when compiling an analysis, which cur-

rently are Intel Math Kernel Library (MKL) and NVidia CUDA. MKL provides several com-

putationally efficient numerical algorithms and functions that can be used when coding a

pipelined data stream application. HEP-Frame internally uses MKL to provide the user with

efficient Pseudo-Random Number Generators (PRNGs), a compute intensive task used in

several data stream applications. A detailed discussion in how PRNGs are used in HEP-Frame

is later presented in Subsection 3.3.2. NVidia CUDA is also used to improve the computa-

tional efficiency of the HEP-Frame PRNG functions, by offloading this intensive task to GPUs

through the cuRAND library. Use the latest CUDA Toolkit and an adequate CUDA capable

GPU. HEP-Frame can be installed using Clang, Intel and GNU compilers. Other compilers

may work but they have not been tested yet. The compiler to be used to install HEP-Frame

and compile an analysis is set by executing export HEPF_COMPILER=INTEL/CLANG in the

bash session. GNU compiler is used by default.

The update.sh script automatically downloads and installs the latest version of HEP-

Frame, replacing the contents of the lib, scripts and tools folders, as well as re-compiling

the framework core. The Analysis folder will remain untouched.

56 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

The newAnalysis.sh script creates a new pipeline data stream application folder and

skeleton files, which are generated by the tools in the tools folder. This is schematised in

Figure 3.1, where an application named App 1 was created.

3.1.2 Tools to Automate the Application Development

The HEP-Frame run-time system handles all repetitive tasks usually performed during an

application code execution, while requiring the user to provide code snippets to fill the re-

maining gaps, as shown in Figure 3.2.

Figure 3.2: Execution flow with the HEP-Frame: the user provides code for the darker boxes
(orange and green) and the framework run-time system manages the blue boxes.

HEP-Frame provides a toolset containing scripts for the development and compilation of

pipelined data stream code. Four tools are available in HEP-Frame: skeleton_generator,

class_generator, record_parser and interface_generator. HEP-Frame can also in-

clude third-party tools to automatically and transparently create the load/store code snippets

and data structure specification for a specific case study (the green boxes in Figure 3.2). Ad-

ditional tools can be developed by the users, similarly to plugins, so that other specific needs

of their pipelined skeleton can be addressed. HEP-Frame currently provides the class_-

generator and record_parser tools, which were created to automatise repetitive code gen-

eration of applications related to high energy physics (since this is the scientific field of the

case studies used to validate the performance and usability of the framework), which are used

by the framework when compiling an application.

The skeleton_generator tool creates a skeleton with function prototypes for the user

to fill in with the required code to run an application, such as propositions and their inter-

3.1. HEP-FRAME STRUCTURE AND USABILITY 57

dependencies, dataset file loading, dataset element class structure and result storage. Users

code their pipeline stages as propositions that HEP-Frame will consider as black boxes. The

framework does not modify the code to ensure that users trust the correctness of the al-

gorithms and that they have total control of their code. This also allows applications to

be easily updated and expanded, while working out-of-the-box with updated versions of

HEP-Frame. Users can also organise their propositions and auxiliary functions in multiple

source files, as HEP-Frame will automatically detect and compile these files. Propositions

are passed to the HEP-Frame engine by calling the addProposition (propFuncPointer*

prop, string propName)method in the main function in the skeleton file, which receives a

proposition function pointer and an user-defined proposition name. The order by which the

propositions are added will be used as the initial pipeline order. Users define the dependen-

cies between propositions in the main function through the method addPropDependency

(string prop1, string prop2), which tell the HEP-Frame scheduler that prop2 should

be executed after prop1. The HEP-Frame scheduler balances proposition execution without

compromising the correctness of the results based on these user-defined dependencies.

The class_generator automatically creates the dataset structure specification and the

code to load the data from an input data file. This tool is automatically called when the user

creates a new application with HEP-Frame, in the install.sh script. Currently, it supports

.root files commonly used in high energy physics data stream applications, as the ones used

as case studies, and outputs the C++ class file expected by HEP-Frame, which specifies the

variables of a dataset element and the code to read these variables from the input file. Users

can manually provide this code in the skeleton file or develop a tool that handles different file

extensions to replace class_generator. Partial and final results can also be stored: the user

provides the code in a specific function on the skeleton file. Users specify the dataset element

variables to be stored, or a composition of variables (such as var1 * var2) by indicating

their name on a specific section of the skeleton file, for the elements that either pass each

proposition or the whole pipeline. The code to store these variables for each dataset element

is automatically created by the record_parser tool when the user compiles the application.

By default, it outputs a .csv file for each defined variable, but also supports the .root file

58 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

format. Again, users can either supply their own code to write the variables or develop a tool

to automatise this process.

The interface_generator creates an interface at compile time to access the HEP-Frame

internal data structure. The propositions access each dataset element as if it is stored in

global memory.

The prototype of a proposition function receives only an unsigned counter parameter

as input, to be managed by the HEP-Frame run-time engine, and returns a Boolean that in-

dicates if the current dataset element passes to the next proposition or is filtered out. The

interface_generator translates the access to these variables into accesses to the HEP-

Frame data structure that holds all dataset elements, through a define-based header file. For

instance, in the following code val1 and val2 are variables of a dataset element that can be

accessed as if they are declared in global memory.

1 bool prop1 (unsigned this_event_counter) {

2 if (val1 > val2)

3 return true;

4 else

5 return false;

6 }

7

8 // ... prop2 defined here ...

9

10 int main (void) {

11 // ... automated initialisation above ...

12 analysis.addProposition (prop1 , "prop1");

13 analysis.addProposition (prop2 , "prop2");

14 // prop2 must execute after prop1

15 analysis.addDependency ("prop2", "prop1");

16 analysis.run ();

17 // ... automated cleanup below ...

18 }

3.2. HEP-FRAME MULTI-LAYER SCHEDULER 59

This example shows a simple proposition that only evaluates one criterion. Propositions

can contain complex algorithms, calls to user or library functions and additional data struc-

ture creation. A proposition being executed by a given thread or process can only access the

information of the dataset element assigned to it by the HEP-Frame scheduler. It can also ac-

cess other user-defined data structures, but not dataset elements that were not yet assigned

to it. These propositions are replicated by a group of threads and automatically applied to all

dataset elements, according to the scheduler assessment, similarly to the execution of kernels

in CUDA. How to code a sample application is further detailed in appendices A and B.

3.2 HEP-Frame Multi-layer Scheduler

HEP-Frame uses a multi-layer scheduler, where each layer is designed to manage and opti-

mise a specific part of the execution of a pipelined data stream application. The multi-layer

structure reflects the need to distribute the workload among distributed servers (such as clus-

ters or grid/cloud), and to manage compute- and memory-bound codes on multicore and

manycore servers with accelerators.

3.2.1 Structure of the Scheduler Layers

The top layer of the HEP-Frame scheduler (Figure 3.3) manages multiple datasets using a

master-worker demand-driven approach on a distributed environment. Worker processes

request dataset files of a predefined size to a master process until all data is processed. The

mid and bottom scheduler layers present a novel approach to overcome limitations of other

schedulers and tools for pipelined data stream applications.

The main focus of the HEP-Frame scheduler is on desktop and single-node servers, as the

number of computing cores in current devices is rapidly increasing. More complex strate-

gies could be later implemented on the top layer to efficiently schedule the workload among

nodes in larger cluster environments.

The middle layer implements the multithreaded execution of a file/data-stream reading

with a data structure creation and pre-processing, addressed as data setup (DS), in paral-

60 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

Figure 3.3: Multi-layer structure of the HEP-Frame scheduler.

lel with the pipeline processing, addressed as data processing (DP). The number of parallel

threads allocated to each component (DS and DP) is adjusted during the execution of the

application, adapting to memory- or compute-bound code.

The bottom layer implements parallel data processing for multicore and manycore de-

vices, which focus mostly on improving the performance of compute bound code. Proposi-

tions of the same or different dataset elements are concurrently executed, prioritising the ex-

ecution of faster propositions that filter out more data, while respecting dependencies among

propositions in the pipeline. This pipeline order is periodically updated. This layer also man-

ages the distribution of the workload in a compute server coupled with manycore KNC co-

processors.

3.2.2 Multiprocess Scheduling

The top scheduler layer implements a master-worker strategy using MPI, where the master

creates a pool with a set of input file names, and their respective file path, accessed by each

worker to retrieve a set of files to process. Once a worker finishes processing its current set of

files it gets another set from the pool (a file per DS thread, which is later detailed in Subsection

3.2.3). This process is repeated until the pool is empty. Several scientific fields, such as high

energy physics, often process large amounts of data that is stored in relatively small files (up

3.2. HEP-FRAME MULTI-LAYER SCHEDULER 61

to 2 GiB), which provides enough data granularity for an adequate load balancing using this

approach.

File sharing among processes was used instead of sharing the HEP-Frame main data

structure because of two key limitations:

• When sharing the data structure a master process has to load all data before passing it

to the worker processes. If only the files are shared, each process is able to load into its

data structure, diminishing communications and parallelising the input file reading,

which may have a significant impact on performance for I/O-bound code.

• The HEP-Frame main data structure is a container of instances of a class, whose struc-

ture and variables are defined by the user, since it depends on the input file. Com-

municating the data structure among processes would require either its specification

to be limited, which is what other frameworks do and goes against the flexibility that

HEP-Frame aims to offer, or the user to provide a serialisation method. Serialising a

class restricts the usage of instances of other complex classes and pointers, which hap-

pens in the case studies presented in Section 4.1, and may be out of the expertise of a

non-computer scientist.

Each process runs its own independent version of the subsequent layers of the scheduler,

with no communication to share information about the pipeline behaviour used by the sub-

sequent layers. Sharing scheduler information would require either synchronisation among

processes, which is considerably longer than when using threads on a shared memory envi-

ronment, or the data to be sent asynchronously, which meant that the subsequent scheduler

layers would not use recent information about the pipeline behaviour. The latter may have a

negative impact on performance when dealing with highly irregular workloads, where quick

adaptation of the scheduler is crucial. The processes output the results in independent files,

which are later merged by the user using third party tools depending on the file format. HEP-

Frame cannot support file merge as it is the user responsibility to provide the required code

to load input files and to write the results.

The amount of processes is defined by the user when executing an application. A gener-

62 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

ally good configuration uses one process per computing server, independently of the charac-

teristics of the code (I/O-, memory-, or compute-bound). However, multiple processes may

provide better performance for some applications on multi-socket servers, where a process

is created and assigned to each multicore/manycore device on the server. This forces HEP-

Frame to create a data structure per multicore device, which will be stored in its respective

memory bank and eliminates the memory access penalties of threads accessing data on a

NUMA server configuration. The impact of NUMA accesses is assessed for a set of case stud-

ies in Chapter 4. However, the current version of the scheduler does not automatically define

and manage the amount of processes based on the server characteristics, as the performance

improvement of using multiple processes is not consistent across applications.

3.2.3 Dynamic Tuning of Data Setup and Processing

For each supported mode to input data into the pipeline (batch/mini-batch from files and

streaming, as seen in Section 2.3) the user must provide the code to load a single data element

from the chosen input type. The HEP-Frame scheduler simultaneously processes the data

setup (DS) and data processing (DP) tasks, assigning a file, or input stream, to be read by

each DS thread. This core scheduling layer ensures that both compute- and memory-bound

codes are efficiently executed.DS and DP tasks should finish close to each other, balancing

the amount of threads assigned for each type of task to minimise the overall execution time.

The following heuristic leverages the amount of threads for the DS tasks, addressed as

DSt, and for the DP tasks, DPt:

• Create one DS and one DP thread per physical multicore PU core, but only one thread

will be active at any time. The unnecessary DS or DP threads are put asleep so that

they do not increase the scheduler overhead, and are only switched on when needed.

Preliminary tests showed that using a separate thread for DS and DP in the same core

did not increase the overhead and was simpler for the scheduler to manage over using

a single thread that switches between both tasks.

• Activate the same amount of threads for DSt and DPt as the initial default configura-

3.2. HEP-FRAME MULTI-LAYER SCHEDULER 63

tion.

• Measure the execution time of a DSt (DStt) and a DPt (DP tt) for the same chunk of

dataset elements in the file, with a pre-defined size.

• Compute the time impact of each thread by periodically dividing the chunk time by the

amount of threads used, for both data setup (DStt) and processing (DP tt) execution

times. If the DP takes much longer than the DS, the scheduler allocates more threads

for the DP tasks, and vice-versa. If both DS and DP execution times are similar, use an

intermediate configuration.

• Dynamically tune the number of threads for each task, ensuring only one active thread

per compute core, which is performed at pre-defined checkpoints.

• Periodically compute how many threads (n) should be shifted from setup to processing

and vice-versa, according to equations 1 (if DSt ∑ DPt) and 2 (if DPt < DSt).

DSt °n §DStt =
DSt +DPt

2
(3.1)

DPt °n §DP tt =
DSt +DPt

2
(3.2)

• Double the gap between checkpoints if n does not change in two consecutive check-

points to reduce the scheduler overhead. Afterwards the scheduler tunes the threads

configuration at a double rate, if n changes in two consecutive checkpoints, to deal

with the dataset irregularity.

• Allocate all threads to DP once the DS is complete.

Compute-bound code benefits from having more DP threads active, while still simulta-

neously reading the input data at a lower rate. The scheduler assigns the largest amount of

DP threads possible where the application does not wait for data to be loaded.

64 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

Memory-bound code performance is significantly improved if more resources are as-

signed to DS, when input data can loaded in simultaneous chunks. Using a large amount

of DS threads allows for data to be loaded at a higher rate, while ensuring that the DP threads

do not have to wait for data to be loaded. This approach may also improve IO-bound code,

but it was not tested yet.

Preliminary experimental results showed that there are no significant benefits of using

simultaneous multithreading (Intel Hyper-Threading) in both compute- and memory-bound

codes, using the case studies later presented in Section 4.1. However, this may not apply to

every pipelined data stream application.

The current memory monitoring system in HEP-Frame only frees the whole data struc-

ture when all data is processed by the pipeline. This will be later improved to continuously

free memory as soon as the dataset elements are consumed by the pipeline. When there is no

data in the data structure the DP threads are put asleep.

3.2.4 Pipeline Ordering and Parallel Execution

The initial order of the propositions in the pipeline is defined by the order that each is added

in the code by the user, which may not be the most computationally efficient. Reordering

the propositions often leads to a faster execution of the pipeline, while respecting the depen-

dencies among propositions to ensure the correctness of the results. If the propositions that

discard more data elements are placed earlier in the pipeline, and the heavier propositions

in later stages, fewer data will be processed by the heavier propositions, which reduces the

overall execution time of the pipeline.

The execution flow of the propositions in pipelined data stream applications can only

be defined by a directed cyclic graph, unlike the applications that most list scheduling al-

gorithms tackle. In the absence of dependencies, pr op0 and pr op1 can be executed in any

order, which is represented by a bidirectional edge between the nodes that represent these

propositions, which allows cycles to be present on the graph. More computational power is

required to find the best pipeline order on cyclic than on acyclic graphs.

The HEP-Frame scheduler implements a simple approach to deal with cyclic graphs, as

3.2. HEP-FRAME MULTI-LAYER SCHEDULER 65

there is no need to follow a strict order of the propositions since propositions with no depen-

dencies can be executed in parallel for the same dataset element. The scheduler still creates

a graph, where a directed edge between two nodes (propositions) represents a dependency,

which is previously defined by the user. For instance, if pr op0 needs to be executed before

pr op1 there is only a directional edge from pr op0 to pr op1. A traditional list scheduler would

compute the path with the lowest cost that passes through all nodes in the graph, based on

an arbitrary weight given to each edge connecting two propositions. This path would later

be used as the order of the propositions in the pipeline. The drawback of this approach is

the unnecessary overhead of computing all possible paths and sorting them by weight, in

every pipeline reordering checkpoint, as finding the directional Hamiltonian path is a NP-

Complete problem.

Th scheduler uses the Breadth-First Search (BFS) algorithm [68], once during the applica-

tion initialisation, to compute a list of all paths in the graph with directional edges that corre-

spond to a list of all dependencies among propositions. BFS has a complexity of O(|E |§ |N |),

where E and N are the amount of edges and nodes, respectively. Other algorithms, such as

Depth-First Search [69] or the more computational efficient Linear Breadth-First Search [70],

could be used if BFS had a significant overhead. However, tests later presented in Chapter

4 showed that the overall overhead of the scheduler, which includes the BFS computations

among other operations, is negligible.

A table is built with n rows, where n is the amount of propositions in the longest depen-

dency chain, and all propositions are inserted into a given row according to their position in

their respective dependency chain. If there are no dependencies, a table is built with 5 rows,

which preliminary tests have shown to be adequate, to ensure that some degree of pipeline

reordering can be applied. Propositions with no dependencies are inserted in the first row

of the table. Figure 3.4 illustrates the parallel execution of a pipeline with 7 propositions

(p0...p6) on a 4-core server, for various dataset elements (e0,e1...), as well as a list of depen-

dencies among propositions. The scheduler assigns propositions from a given table row to

be processed by the available DP threads, but does not assign a proposition of the next row

until all propositions on the current row are processed.

66 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

Figure 3.4: Sample pipeline execution with the HEP-Frame scheduler.

This heuristic ensures that all dependencies are respected since dependent propositions

are placed on different rows. If a proposition criteria evaluation fails, or if there are more

DP threads available than propositions left in the current row, the scheduler starts assigning

propositions of the next dataset element.

Propositions are ordered according to their weight within each row; those that weight less

will be processed earlier. The weight of each proposition pw is based on the ratio of discarded

dataset elements (pdde) with its normalised execution time (pt), according to equation 3.3.

pw = r1 §pdde + r2 §pt (3.3)

The default values of r1 are set to 70% and r2 to 30% to achieve a weight between 0 and

1, which were obtained through extensive testing of the case studies presented in 4.1. This

weight is only valid for each proposition on its position in the pipeline when the calculation

is performed. Considering a weight for every order would require the scheduler to consider

a different weight of each proposition depending on the order change it would want to test

for the pipeline. This approach would result in a noticeable scheduler overhead for possibly

minimal gains. Currently, the scheduler generalises the proposition weight regardless of the

proposition position in the pipeline.

3.2. HEP-FRAME MULTI-LAYER SCHEDULER 67

The range of weights for a row of a table is calculated by dividing the maximum possible

weight, which is 1, by the amount of rows in a table. For instance, a table with four rows would

have propositions with a weight of]0,0.25] in the first row,]0.25,0.50] on the second, and so

on.

Propositions are be moved between table rows during the application execution: proposi-

tions with long execution times and that filter out fewer data are placed later in the pipeline.

Propositions with no dependencies can be moved to another row introducing an artificial

dependency. This allows lighter propositions, which filter out a larger amount of dataset el-

ements, to be processed earlier so that less dataset elements are unnecessarily processed by

heavier propositions. Propositions with dependencies are also moved if two requirements are

met: subsequent propositions in its dependency chain can also be moved; the subsequent

propositions in the chain cannot be moved further than the amount of rows in the table. This

is performed efficiently as for each proposition on a dependency chain a list of its subsequent

depending propositions is kept. Figure 3.5 shows how two propositions are moved to higher

or lower rows in the table due to their increase or decrease in weight, respectively.

Figure 3.5: Proposition table update as the scheduler moves propositions 4 and 6.

The scheduler periodically calculates the weight for all propositions and assesses if they

are in an adequate row for their weight. A signal is sent to all computing threads to finish

executing propositions until all current dataset elements currently are processed and then

are put asleep. The threads resume execution once the reordering is complete.

68 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

Figure 3.6 compares a typical list scheduler, which implements parallel proposition ex-

ecution for each dataset element e, with the HEP-Frame scheduler for a case study with 4

independent propositions (p0...p3) on a 4-core server. Proposition p2 filters out the dataset

element eN (red box) and proposition p3 takes significantly longer to execute than the re-

maining propositions.

Figure 3.6: Typical list scheduler vs. HEP-Frame list scheduler for a pipeline of 4 propositions
with no dependencies.

A traditional list scheduler would assign propositions p0 to p3 to a different thread in this

4-core server: p3 is executed (yellow box) wasting computational resources since its output

is discarded for eN due to the failure of p2. The HEP-Frame scheduler introduced an arti-

ficial dependency based on the weight of p3, which forced p3 to be executed after all other

propositions. Proposition p0 for the next dataset element was assigned to the last thread.

This approach avoided unnecessary computations, as p3 was never executed for eN . This

heuristic may provide significant performance improvements for propositions that take con-

siderably longer to execute than others (sometimes by a factor of 106, as is the case in the

applications presented in Section 4.1).

A more sophisticated list scheduler could consider that a task is the combination of a

proposition and a given dataset element. Based on the weights, this scheduler could schedule

p3 of several e to execute much later than the p0°2 of those e, so that if p0°2 failed it could

discard p3 before its execution. However, separating the execution of p0 ° 3 of a given e

3.3. USING ACCELERATOR DEVICES 69

by a significant amount of time leads to a poorer usage of the data locality, since if p3 of a

given e is executed much later than p0° 2 the e data needs to be reloaded into the cache,

causing unnecessary cache misses. The HEP-Frame scheduler takes advantage of the spatial

and temporal locality of the data, as for a given e it schedules p3 to execute as soon as p0°2

finish.

Traditional list schedulers are extremely efficient to manage pipelines of tasks that do not

filter out dataset elements, but are not designed to schedule this type of propositions. This

novel strategy of simultaneously processing propositions of the same and different dataset

elements, while reordering the pipeline and respecting proposition dependencies, reduces

unnecessary computational load and leads to a faster adaptation to irregular workloads.

3.3 Using Accelerator Devices

Using accelerator devices can improve the performance of compute-bound code, and usu-

ally follows two alternative approaches: (i) to offload a significant portion of the code to the

coprocessor, ideally processing it simultaneously with the host devices when available, or

(ii) to offload specific sections of code more suitable for the device characteristics, which

may account for a significant portion of the overall execution time of the original applica-

tion. HEP-Frame can use both offload strategies: it is currently compatible with Intel Knights

Corner (KNC) coprocessor, Intel Knights Landing (KNL) manycore server and NVidia GPU

accelerators.

The KNC device poses some limitations to the user. Firstly, it requires to explicitly transfer

the required data for the propositions from the multicore memory to the coprocessor mem-

ory, forcing the user to use simple data structures. Developing the code to transfer complex

data structures, based on containers, classes and pointers, may require a complete redesign

of all data structures in an application. This limitation is also present on GPU devices. Sec-

ondly, the libraries required by the propositions must be compiled specifically for the device,

which is often not feasible due to several compatibility issues of the architecture and/or com-

pilers.

70 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

GPUs use a different programming paradigm than regular multicore code, which adds to

the same limitations present in the KNC device. Most libraries are not available in CUDA or

OpenCL, and porting them into the accelerator may not be possible for most cases. Therefore,

it may be unfeasible to use the offload approach (i), since most propositions use functions

from libraries that were not ported for GPU devices.

HEP-Frame can take advantage of KNC and GPU devices by providing an API with effi-

cient implementations of frequently used code for scientific applications. Currently, Pseudo

Random Number Generation (PRNG) functions are supported, but more functions can be

added to the API based on user feedback.

HEP-Frame is also able to process the proposition pipeline on manycore KNL servers,

both as a single server and simultaneously with other multicore/manycore servers. It uses

a variation of the list scheduler for multicore devices, as seen in Subsection 3.2.4. An HEP-

Frame prototype was developed to assess the feasibility of offloading PRNG to KNL servers,

following the offload approach (ii), but preliminary tests showed that it provides a smaller

performance improvement than processing the whole pipeline in the server.

3.3.1 Offloading Propositions into the KNC Coprocessor

A HEP-Frame proof-of-concept prototype was developed to assess the feasibility of using

KNC devices using approach (i). Offloading propositions requires the user to develop the

code to transfer required data to and from the coprocessor, and to adapt the proposition

code. A layer of the scheduler balances the datasets among host multicore and KNC devices,

using a demand-driven approach, where the KNC requests fixed-size data chunks to process

before becoming idle.

The scheduler was adapted to use the KNC in offload mode with some minor modifi-

cations: the pipeline tasks are executed in serial mode, while the datasets are processed in

parallel, one per active thread (Figure 3.7) and fully exploring the multithreading capabilities

of this device. The filtering ratio and execution time of each task on the KNC pipeline are

measured and transferred to the host device with each new data chunk request, so that the

scheduler may compute a new pipeline order specifically for the KNC.

3.3. USING ACCELERATOR DEVICES 71

Figure 3.7: Comparison of the scheduling of a pipeline of propositions in the multicore and
KNC devices.

The scheduler creates a single pipeline order based on the propositions placement in the

dependency table, which is processed by each thread on different dataset elements. Prelimi-

nary tests showed that using 4 threads per core on the KNC provided the best performance. A

thread is created in the multicore device to exclusively handle the communications between

multicore and KNC and to calculate the KNC pipeline order. The data chunk to be deliv-

ered to the KNC needs to be large enough to efficiently use the 4 threads at each core, while

minimising data transfers, but not so large that the memory transfer significantly degrades

performance. Preliminary tests showed that using 10 to 50 dataset elements per hardware

thread was a reasonable heuristic, using the case studies presented in Section 4.1, since ex-

ecution times of such chunk sizes did not vary more than 5% (this is described in depth in

[71]).

One major limitation of this approach is that the code of the offloaded propositions needs

to be compatible with the KNC, which often is not the case since most pipelined data stream

applications relies on complex libraries that cannot be easily ported to work simultaneously

on multicore and KNC devices. For instance, the case studies used to evaluate the perfor-

mance of HEP-Frame had to be heavily modified, from the data structures to the pipeline,

to account for the explicit data transfers and different parallelisation strategies used in the

KNC. Also, scientific libraries had to be compiled specifically for the KNC, which proved to be

72 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

a laborious task.

HEP-Frame does not provide support for this device in its public version, since most users

cannot dedicate the time required to develop efficient code for KNC devices, while only hav-

ing the potential to provide a small performance improvement. It only improved the per-

formance of a compute-bound code up to 33% using two KNC devices (this performance

evaluation is later detailed in Section 4.3.4).

3.3.2 Offloading PRNGs to Multicore, Manycore and Accelerator Devices

The current version of HEP-Frame implements several Pseudo-random Number Generators

(PRNGs) and distributions on its API (available in MKL [37], ROOT [72] and PCG [63]). Some

that can be offloaded to NVidia GPUs, using the CUDA cuRAND library [67], while the rest

can be offloaded to other multicore, KNL and KNC devices. A request for a new PRN in a

parallel multithreaded environment usually follows one of these approaches:

• A single PRNG to feed all concurrent threads, where each PRNG execution is atomic.

Results would not be reproducible as Pseudo-Random Numbers (PRNs) consumed by

each thread varies between runs [73]. It does not support concurrent execution of the

PRNG.

• A single PRNG to feed each stream request using a transition function to guarantee

that there are no correlations among streams, known as leapfrog. Used in the cuRAND

implementation of Mersenne Twister [74]. It supports concurrent execution.

• A single PRNG to feed all concurrent threads with a different pre-computed seed for

each stream, causing the generated PRNs to be equally spaced in the overall PRN se-

quence, which may be slow [75], known as splitting. It supports concurrent execution.

• An independent PRNG per compute thread initialised with different sets of parame-

ters. If these parameters are not adequate, streams may not be truly independent, as

referenced in [76]. The most common and portable approach.

3.3. USING ACCELERATOR DEVICES 73

An implementation of a PRNG is as important as the approach used to interact with the

PRNG itself in the code to the overall performance of an application. For instance, one can

generate all PRNs upfront, or request a PRN when needed, which will have a different per-

formance impact depending on the application and hardware environment. Using an ad-

equate approach may have an increased impact on the performance of parallelised code,

where there may be multiple threads accessing shared PRNs and/or PRNGs.

HEP-Frame provides three API alternatives to use PRNGs in parallel environments:

• To call the PRNG whenever a single PRN is needed.

• To generate a batch of PRNs and store the result in a thread private buffer. When a PRN

is needed the compute thread removes it from the buffer. When the buffer is empty, a

new batch is requested.

• To generate a batch of PRNs and store the result in a thread private dual-buffer. While

the one buffer is being consumed, the other is being filled.

The efficiency of each strategy will depend on the computational server and the charac-

teristics of the application. Preliminary results showed that sharing buffers among compute

threads degrades performance due to contention when accessing shared resources. There-

fore, the proposed buffer implementations are thread-private.

The dual-buffer approach minimises the overhead of the PRNGs execution. Figure 3.8

illustrates this approach. This approach attempts to hide the costs of memory transfers over

PCI-Express interface and ethernet, when the PRNG is offloaded to a GPU and to another

server over MPI. Using an alternative computing device exclusively for PRN generation, such

as a separate server, GPU, or manycore device, frees computing resources on the host server

that can be used to process other sections of an application.

Single PRN generation were not implemented for multiple nodes connected by ethernet

and manycore devices connected by PCI-Express, since the lack of parallelism and overhead

of memory transfers would significantly degrade the application performance.

As seen in Figure 3.8, the single- and dual-buffer implementations resort to a manage-

ment thread for each DP thread on the host device. The management thread is responsible

74 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

Figure 3.8: Dual buffer implementation in the PRNG management threads.

to allocate the buffers on memory, interact with the PRNGs on the devices using specific li-

braries and handle data transfers. The overhead of the management threads is minimal as

they are only used to fill the buffers and are asleep the rest of the application run-time. On

the dual buffer approach, a buffer is filled as soon as the it is depleted.

The memory bank in which the PRN buffers are allocated may have a significant impact

on performance on NUMA servers. If a DP thread has to access a buffer allocated on the

memory bank of another multicore device it will have an increased penalty over accessing a

memory bank of the device it is on. To mitigate this problem, management threads are bound

to the core of its assigned DP thread, ensuring the buffers are allocated in the memory bank

closer to each DP thread.

In the parallel implementations using the NVidia GPU, each PRNG management thread

in the multicore devices uses a different stream to the GPU to launch kernels and perform

the memory transfers, ensuring that concurrent management threads can simultaneously

generate and receive PRNs. Tests showed that for up to 32 computing threads (and associated

management threads) the NVidia K20 GPU device was not fully utilised in the case studies

used (later discussed in Chapter 4 for a description of the GPU and case studies), meaning

that it could scale for a greater number of multicore threads. This behaviour may vary with

different applications, according to their PRN demand.

The MKL library was used to generate PRNs on the KNL manycore server (over an Eth-

ernet link) and the KNC manycore coprocessor (over PCI-Express), as it provides optimised

3.3. USING ACCELERATOR DEVICES 75

implementations for these devices. Preliminary tests showed that the PCG RXS-M-XS PRNG

did not perform as well as MKL, as its code does not take advantage of the 512-bit vector

instructions available in these devices.

Evaluation of Sequential PRNG Performance on Multicore Devices

MKL offers a wide range of implementations of various Gaussian transformations to generate

a single PRN or batches of PRNs using the Mersenne Twister algorithm. To offer all these

implementations on HEP-Frame API would unnecessarily increase its complexity and require

the user to choose an adequate algorithm and implementation to ensure efficient execution

of the application. HEP-Frame should only offer the fastest implementation of each PRNG

algorithm and transformation for each supported computing device, to simplify the options

provided to the users.

Figure 3.9 compares the sequential execution times to generate 106 PRNs of various im-

plementations of the Mersenne Twister with the ROOT (a library for high energy physics, later

detailed in Section 4.1) and MKL libraries, the former coupled with the Box-Muller (ROOT-

BM) transformation and the latter with the two available Box-Muller implementations and

the Inverse Transform Sampling (MKL-BM1, MKL-BM2 and MKL-ICDF). MKL also offers im-

plementations optimised to generate batches of PRNs (suffix -A) with a single function call.

The PCG was coupled with the Box-Muller transformation(PCG-BM). A dual socket server

with 12-core Intel Xeon E5-2695v2 Ivy Bridge devices, at 2.4 GHz with 64 GiB RAM was used

for this test.

This test shows that there is a small difference between the execution time of ROOT and

PCG generators, with 29 and 25 ms respectively. The MKL batch generator using the Inverse

Transform Sampling only required 3 ms to generate these numbers, being the fastest of all

tested generators. Single number generation using MKL with any transformation performed

the worst, up to 12.2x slower than ROOT, since it has an increased overhead due to an internal

PRNG management overhead that is unnecessarily performed for every number. The MKL-

ICDF-A generator will be used with the dual-buffer approach as the default MKL generator

on HEP-Frame, on both multicore, KNC and KNL devices.

76 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

Figure 3.9: Sequential execution time of each PRNG implementation for multicore devices to
generate 106 PRNs.

3.3.3 Pipeline Reordering and Parallelisation in the KNL Server

The scheduling algorithm presented in Subsection 3.2.4 was tweaked to explore the KNL mas-

sively parallel architecture. Pipelines with complex dependencies require scheduler task syn-

chronisations that may limit performance when using large amounts of threads (up to 512 on

this device) on a device with such a low clock rate (1.1 to 1.3 GHz) and high communication

costs among different cores.

Each DP thread on the KNL server computes the whole pipeline for a dataset element,

instead of a combination of a dataset element and a proposition. The execution time and

the ratio between processed dataset elements and those filtered out is still measured for each

proposition, as it will still contribute to the reordering of the pipeline. After processing a data

chunk, an average of the normalised measured values of all threads for a given proposition is

computed, which attributes a global weight to each proposition.

A directed cyclic graph is built, where each vertex represents a proposition and the edges

to a given node have the weight of the respective proposition. A dependency where p1 must

be executed after p0 is represented by an edge with an "infinite" weight on the edge from p1

3.3. USING ACCELERATOR DEVICES 77

to p0, ensuring that a path with "infinite" weight is never used. A list of all nodes that can be

used to start a path is stored when building the graph, which greatly reduces the amount of

paths that the algorithm to find the best path has to test.

The best pipeline order is obtained by computing the shortest path that passes through

all vertices (propositions) of the graph using a recursive backtracking algorithm. The shortest

path, i.e., the path with the least weight, is computed for each of the nodes that can be used

as the beginning of a path on the graph. Of these paths only the shortest is considered, which

is used as the best pipeline order at the moment. The backtracking algorithm, findPath, to

determine the shortest path for a given starting node is shown in Figure 3.10. findPath is

called for each proposition that can be used to start a path. It receives this proposition and

discards it if it is already on the path (which is initialised empty) or if the edge connecting this

proposition with the last on the path as an infinite weight. If not, the current proposition is

added to the current path and calls itself recursively for each proposition that is neighbour to

the last on the path. Once the path is complete, i.e., all propositions are on the path, findPath

stores the current path as the best pipeline order if its overall weight is lower than the previ-

ously stored path. Preliminary tests showed that the overhead of this algorithm is less than

1% of the case studies, since it is only computed for a small set of starting nodes, and these

graphs usually have a small number of overall nodes (18 for these case studies, see Section

4.1 for more information on these case studies).

Figure 3.10: Scheduler pipeline reordering backtracking algorithm for the KNL server.

78 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

The pipeline is reordered at given checkpoints during the application execution, as shown

in Figure 3.11. These checkpoints enforce a barrier to ensure that all threads do not process

any dataset elements before computing a new pipeline order (green boxes in Figure 3.11).

Once this order is calculated, all threads use it to process the next dataset elements until the

next checkpoint.

Scheduling the whole pipeline better explores the vectorization capabilities of the KNL (it

is easier to predict the instructions that each thread will execute), but is not ideal for highly

irregular code, due to a coarser task grain size.

Figure 3.11: Parallel execution of the pipeline in the KNL server for n threads (Th).

3.4 Summary

HEP-Frame is a user-centred framework to aid the development of pipelined data stream ap-

plications that analyse data from a large number of streamed dataset elements. It provides

a simple code development environment, which is especially important to improve the code

development speed and robustness, as it provides a set of code skeletons and automatises

repetitive tasks. The framework ensures efficient parallel execution of pipelined data stream

applications portable across homogeneous multicore and manycore servers, and heteroge-

neous servers coupled with manycore and GPU accelerator devices, transparently to the user.

HEP-Frame structures the application code into input file reading, pipeline definition us-

ing propositions and output storage. As a case study, it currently provides tools to automatise

the code creation for input file reading and output storage for high energy physics applica-

3.4. SUMMARY 79

tions, reducing the amount of code that an user has to develop. Other tools can be developed

by users and integrated in the compilation process to automatise any part of the code devel-

opment in the provided application skeletons.

HEP-Frame implements a multi-layer scheduler for efficient execution of pipelined data

stream applications for homogeneous and heterogeneous servers. This scheduler adapts to

the computational characteristics of the server and application at run-time, and is designed

to process pipeline propositions and various dataset elements in parallel, distributing them

across the available computational resources. It specialises in balancing irregular workloads

for I/O, memory- and compute-bound applications without prior knowledge of the applica-

tion and compute server.

The first scheduler layer parallelises the execution of the application input file reading,

pipeline processing and output storage for a pool of input files with multiple processes. It bal-

ances the input files among the processes using a demand-driven approach, allowing HEP-

Frame to scale with multiple compute servers.

The second scheduler layer parallelises the execution of the input file reading and data

structure creating (data setup, DS) with the pipeline processing (data processing, DP), using

multiple threads. It manages the amount of threads assigned for DS and DP tasks at run-time,

according to each application requirements. This strategy allows HEP-Frame to adapt to I/O-

bound code, by assigning more threads for simultaneous execution of DS tasks, compute-

bound code, by assigning more threads to DP tasks, and to memory-bound code, by adopting

an intermediate distribution of threads.

The third scheduler layer focus on the efficient parallel processing of pipeline proposi-

tions of the same or different dataset elements (DP task). This layer implements a strategy for

proposition reordering and parallel execution in the pipeline, to ensure that faster proposi-

tions that filter out more data are executed before the more compute intensive propositions.

This strategy ensures that less dataset elements reach the heavier propositions, reducing the

overall execution time of the applications.

The proposition execution is performed in Intel Xeon Phi manycore devices, using a vari-

ation of the third scheduler layer. The whole pipeline is executed by each thread on different

80 CHAPTER 3. HEP-FRAME: A HIGHLY EFFICIENT PIPELINED FRAMEWORK

dataset elements, eliminating the parallel execution of propositions of the same dataset ele-

ment. This induces a coarser grain for the scheduler workload balancing, which may affect

highly irregular applications, but reduces the high overhead that the original layer has on

these specific devices.

Finally, HEP-Frame provides a wide range of efficient pseudo-random number genera-

tors that can be executed on the compute server, offloaded to other multicore and manycore

compute servers, and offloaded to manycore and GPU accelerator devices. The scheduler

provides a dual-buffer management system that transparently generates a batch of pseudo-

random numbers on these devices, while a second batch is consumed by the application,

with a negligible overhead. This strategy hides the time penalties of transferring data from

other servers or accelerator devices, while freeing compute cores of the main server to pro-

cess other sections of the application.

Chapter 4

HEP-Frame Performance Evaluation

This chapter presents a quantitative performance evaluation of the HEP-Frame key fea-

tures on various parallel environments. This evaluation is performed using as case stud-

ies three real world scientific data analyses, which represent pipelined data stream appli-

cations with different computational characteristics. HEP-Frame is evaluated using var-

ious single- and dual-socket multicore and manycore servers, some coupled with many-

core and GPU accelerators, representing different device micro-architectures relevant in

desktop and mini-cluster environments.

The performance of the layers of the HEP-Frame scheduler is individually as-

sessed, presenting and discussing the results for the three case studies on various servers.

An evaluation of different strategies for PRNG available in HEP-Frame, a key component

in most pipelined data stream applications, is also presented and discussed. Finally,

HEP-Frame is compared against StarPU, a direct competitor designed for a wider range

of applications.

81

82 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

4.1 Case Studies: t t̄ H Scientific Data Analyses

Pipelined data stream applications should have a well-defined set of characteristics to be

used as case studies to evaluate the performance of every HEP-Frame feature:

• Be representative of one or more classes of code (I/O-, memory-, or compute-bound).

• Be real applications developed by computer or non-computer scientists and actively

used in a production environment.

• Contain the key features of a pipelined data stream application as described earlier,

namely process a very large set of mini-batch or streaming n-tuple input data, and over

at least 10 processing pipeline stages. Some propositions should be commutative, filter

out dataset elements, and/or perform heavy and irregular computational tasks.

• Its behaviour should vary with small modifications to the code or to the input data: ei-

ther more compute-bound or more memory-bound. This allows to assess the impact of

the memory access and computation bottlenecks, while ensuring that it is not caused

by changes in the application code.

Scientific data analyses, a subset of pipelined data stream applications, are frequently

used by high energy physics scientists at CERN to study the building blocks of the universe.

Proton beams are accelerated in opposite directions close to the speed of light, at the Large

Hadron Collider (LHC), and collide at the core of specific particle detectors, such as the one

used by the ATLAS Experiment [77]. The particles that decay from this head-on collision

interact with different sub-detectors, which measure their energy, momentum, and position.

A particle collision, and associated decaying particles, is known as an event.

Scientific data analysis applications in high energy physics usually process intermediate

size data formats, rather than the information directly measured by the particle detectors.

These data formats are developed at some stage of the overall analysis of an event (from mea-

suring the event in the detectors to the obtaining the final physics results). In the initial stages

of this analysis, the full output data format, which uses information directly from the output

4.1. CASE STUDIES: T T̄ H SCIENTIFIC DATA ANALYSES 83

detector reconstruction (known as xAOD in ATLAS), comprises very large sets of data with an

accumulated size of the order of the petabytes. From these large datasets, an intermediate

sized data format is produced (of the order of the terabytes), from which physicists can ob-

tain the final n-tuples (using the ROOT file format, with the .root extension) that is of the

order of the megabytes to few gigabytes. Most scientific data analysis are expected to use a

filtered xAOD file, usually stored in a ROOT format, but users can have access to the original

xAOD files if necessary. ATLAS has collected more than 170 petabytes of data.

The selection of an adequate case study fell on a scientific data analysis code developed

by high energy physics scientists working at the ATLAS Experiment that operates on this last

stage: the t t̄ H analysis. The goal of this code is to study the production of top quarks as-

sociated to a Higgs boson [78], in the dileptonic channel. Figure 4.1 represents the final

state topology of a proton beam collision for the t t̄ H production with an associated Higgs

boson. One top and anti-top quarks and one Higgs boson are produced following a proton-

proton collision. The top quarks are expected to decay through the main decay channel, i.e.,

t (t̄) ! bw+(b̄w°), and the Higgs boson to H ! bb̄. The b quarks are detected as jets of par-

ticles due to a physics process known as hadronization. The w+(w°) bosons are expected

to decay to leptons, i.e., w+(w°) ! l+vl (l°v̄l). The outcome of an event is then recorded

by the ATLAS detector, which measures the properties of b quarks and leptons (both muons

and electrons). Neutrinos are not recorded since they do not interact with the detector, but

can be later analytically reconstructed by the t t̄ H analysis, through a process addressed as

kinematic reconstruction.

4.1.1 The t t̄ H Analysis Code

The t t̄ H analysis code is written in C++ and has 18 propositions that are organised in a se-

quential pipeline. Each proposition has a variable duration for its computational task (from

few microseconds to several milliseconds per event) and a test to filter out measured events

that do not comply with the theoretical t t̄ H model. The kinematic fit aims to reconstruct

the undetected neutrinos by assuming that originate from the w boson decays, which in turn

decay from top quarks. This is achieved by imposing that the energy/momentum of the neu-

84 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Figure 4.1: Schematic representation of the t t̄ production with an associated Higgs boson, in
the dileptonic physics channel.

trinos cannot exceed, together with the charged leptons, the energy associated with their

respective w boson. In turn, the two w bosons are used to reconstruct the energy/momen-

tum of top quarks, assuming the mass of the reconstructed top quarks to be 172,5 GeV. As all

measurements are subject to resolution effects from the detectors used to identify the parti-

cles, it is very likely that the solution obtained directly from the measurements is not accurate

due to uncorrected energy loss. Testing several solutions to allow the energy momentum to

change within a specific range is crucial to achieve an accurate reconstruction of the event.

The last proposition implements the kinematical reconstruction process, which can be

sampled multiple times per event, where the measured data is varied within an ±1% limit on

the energy/momentum of the neutrino according to the Gaussian distribution. This reduces

the relative measurement uncertainty of the detector to improve the precision and accuracy

of the neutrino reconstructions. Only the solution that best fits the data is considered for

each event that reaches this proposition. This process has a direct impact on the amount of

computations performed per event.

4.1. CASE STUDIES: T T̄ H SCIENTIFIC DATA ANALYSES 85

The default organisation of the pipelines in the following analyses was setup by the scien-

tist that developed the code and it was already optimised under his point of view: the heavier

proposition is the last pipeline stage, while previous stages filter out a significant percentage

of events. The dependencies among propositions in the t t̄ H analysis are represented in Fig-

ure 4.2. The propositions inside the blue boxes do not have dependencies among them but

depend, as a group, on other propositions.

Figure 4.2: Schematic representation of the proposition dependencies in t t̄ H analysis.

Three versions of the t t̄ H analysis were considered as representative case studies:

ttH_as (accurate detector system): the data measured by the ATLAS detector is considered

100% accurate when reconstructing the event. This behaves as a latency-bound code

in most computing systems.

ttH_sci (detector system with a confidence interval): considers an error in the accuracy of

the ATLAS detector measurements up to ±1% and performs an extensive sampling

within the 99% confidence interval in the kinematic reconstruction, where only the

best reconstruction is considered. This version performs 1024 samples, where each re-

quires the generation of 30 different PRNs, to a total of 30 Ki numbers per event, leading

to a compute-bound code.

ttH_scinp (sci with a new pipeline): two propositions were replaced to perform different

operations on the data element, maintaining the same overall proposition dependen-

cies and only 128 samples within the same confidence interval of ttH_sci. This version

is also compute-bound, but is less compute intensive than ttH_sci.

86 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

A preliminary test of the t t̄ H analyses was performed on a dual-socket Ivy Bridge server

with the dataset used for the performance evaluation to measure the execution time and fil-

tering ratios of the propositions (the server is later described in Section 4.2). These results are

detailed in Tables 4.1 and 4.2, respectively. The 18 ttH_as propositions have execution times

always shorter than 13 microseconds, of which 16 pass more than 90% of the events. Two

propositions have a passing ratio of 63% and 50%, respectively. The ttH_sci propositions

have the same filtering ratios, since they share the same pipeline flow as ttH_as, but propo-

sitions 17 and 13 are heavier with an execution time of 29 and 5 milliseconds, respectively.

The new proposition 13 in ttH_scinp has a longer execution time than in ttH_sci, around

49 milliseconds, and proposition 16 has now a passing ratio of 30%, versus 99% in ttH_sci.

Table 4.1: Execution time of the 18 propositions in the t t̄ H analyses.

Execution Time (nanoseconds)
]0,102]]102,104]]104,106]]106,108]

ttH_as 2 15 1 0
ttH_sci 2 13 1 2
ttH_scinp 2 13 1 2

Table 4.2: Filtering ratios of the 18 propositions in the t t̄ H analyses.

Passing ratios (% of passing dataset elements)
[0%, 20%]]20%, 40%]]40%, 60%]]60%, 80%]]80%, 100%]

ttH_as 0 0 1 1 16
ttH_sci 0 0 1 1 16
ttH_scinp 1 0 1 1 15

These analyses use a wide set of features from the ROOT framework [72], which is a tool

developed at CERN and widely used by the high energy physics community. It provides li-

brary functions for I/O of ROOT files, physics, statistical analysis tools, pseudo-random num-

ber generators and even application skeleton generators. Since most propositions of the t t̄ H

analyses depend on ROOT functionalities that are not implemented in any CUDA library, and

cannot be easily ported, the pipeline cannot be executed in GPU devices.

4.1. CASE STUDIES: T T̄ H SCIENTIFIC DATA ANALYSES 87

4.1.2 Simple Parallelisation

The three original t t̄ H analyses are implemented sequentially. The two parallelisation ap-

proaches already described in Section 2.3.3, based on multiple threads and multiple pro-

cesses, were implemented into these analyses so that HEP-Frame can be compared with with

these analyses using the same amount of computing resources. Both parallelisations should

be designed to receive a large set of ROOT files, as these analyses are used to process several

files usually not larger than 2 GiB each. A set of event information per proposition and all the

data of the events that pass all propositions in the pipeline should be saved into two separate

files.

The multithreaded parallelisation requires the initial data setup (input file reading, data

decompression and data structure creation on memory) and output file writing to be per-

formed sequentially, as ROOT file reading is not thread-safe. The pipeline processing can be

performed simultaneously by several threads on different events, where each thread runs a

sequential version of the full pipeline. Threads store event information per proposition on

thread private data structures, which are merged before being written to an output file. This

parallelisation is implemented using OpenMP [40]. The OpenMP dynamic scheduler was

used to adapt the workload distribution according to the irregularity of the pipeline execu-

tion. This whole process is repeated for each input file.

The multiprocess parallelisation is used by non-computer scientists, where multiple in-

stances of the analyses are executed with different sets of input files. Each instance of the

analyses outputs two files, as previously described, which are later merged with the outputs

of the remaining instances. An alternative approach is to launch a single instance of an anal-

ysis, which then creates a set of processes and divides the workload accordingly using a Mes-

sage Passing Interface (MPI). The path to each input file is stored in a pool that is accessed by

each process, which sequentially performs the data setup and processing, while partial and

final event information is merged at the end of the processes execution. This approach was

implemented using OpenMPI [20], but preliminary tests did not show a significant difference

in performance over the multi-instance parallelisation and was discarded.

While the multiprocess approach ensures that there is simultaneous data setup and pro-

88 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

cessing of the events, the multithreading can only perform parallel processing of different

events.

4.1.3 Porting t t̄ H Analyses into HEP-Frame and StarPU

The t t̄ H analyses were ported into HEP-Frame by responsible scientist in just four hours, af-

ter a 30 minute crash course on the basic interaction with the framework, without requiring

substantial changes to the original code. A code skeleton and data structures were automat-

ically created by the HEP-Frame plugins based on an input ROOT file. If no such plugin was

available, the user would also have to declare the variables of an event in a C++ class file, and

provide the code to read the input files. The original analyses each proposition accesses the

event variables stored in global memory. Since HEP-Frame provides an abstraction to access

the dataset information in its data structure as if it is on global memory (as seen in Section

3.1), the propositions did not require any modifications. The code of all propositions was

originally in a single function and had to be separated into individual functions.

The implementation of the t t̄ H analyses in StarPU required major modifications to the

original code to fit the framework requirements, which had to be performed by an experi-

enced computer scientist. A major restriction that StarPU poses is the use of the smartPtr

as the container of the event data structure, which required a major reorganisation of the

original event structuring. This implementation uses the same multicore MKL PRNG as pro-

vided by HEP-Frame. The standard Heterogeneous Earliest Finish Time strategy [79] (HEFT,

dm scheduler in StarPU) was used to balance the workload among the available workers. It

schedules the propositions based on their execution time history, which causes tasks to be

reordered according to their computational performance. The dmdas scheduler is a variant

of HEFT that requires the user to implement a strategy to properly assign weights to the tasks

in StarPU, so that the scheduler can reorder them. However, it was not used as the user would

have to measure injected code in every proposition to measure its filtering ratio and execu-

tion time and create a function to assign a weight to each proposition, which is out of the

expertise of most non-computer scientists.

Most propositions in the t t̄ H analyses depend on ROOT functions that cannot be prop-

4.2. TESTBED AND METHODOLOGY 89

erly ported to efficiently use both the Intel Knights Corner coprocessor and NVidia GPU ac-

celerators. The propositions would also require major modifications to their algorithms and

data structures to be executed on GPUs, which would be unfeasible for most non-computer

scientists. Due to these limitations, the use of StarPU will be restricted to multicore devices.

4.1.4 Key Characteristics of the t t̄ H Analyses

Scientific data analyses usually have very specific sets of properties and can be used as case

studies to evaluate the HEP-Frame performance. They can:

• Represent multiple types of scientific workloads (I/O, memory- and compute-bound).

• Be developed by non-computer scientists and actively used in their research.

• Be structured and contain a set of computing characteristics as defined in Section 2.3.

• Ideally, some propositions should be commutative, filter out dataset elements and/or

perform heavy and irregular computational tasks.

The t t̄ H analysis code, a set of three applications used by high energy physicists at CERN,

was chosen as case study representative of a wide set of pipelined data stream applications.

As the original code of t t̄ H is sequential, two distinct parallel implementations were de-

veloped to provide a fair comparison with HEP-Frame. These implementations followed the

two common parallelisation approaches in scientific computing, already described in Sec-

tion 2.3.3. These analyses were also ported into StarPU, a direct HEP-Frame competitor, in

order to evaluate the differences between the schedulers available in these specialised frame-

works.

4.2 Testbed and Methodology

The three configurations of a t t̄ H analysis (ttH_as, ttH_sci and ttH_scinp) were tested

with 128 input data files, each with 6,000 events (the dataset elements), with around 250 dif-

ferent data variables per event, corresponding to measurements associated to reconstructed

particles (electrons, muons, jets, etc) from ATLAS.

90 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Four different types of compute servers were selected for the quantitative evaluation of

the HEP-Frame performance features:

• A dual-socket server with 12-core Intel Xeon E5-2695v2 Ivy Bridge devices (IB) @2.4

GHz nominal, with 64 GiB RAM, coupled with a NVidia Tesla K20 with 2496 CUDA cores

and 5 GiB of GDDR5 memory and a 61-core Intel Xeon Phi 7120 @1.2 GHz (KNC, 4-way

simultaneous multithreading), linked through PCI-Express.

• A single-socket server with 10-core Intel Xeon E5-2630v4 Broadwell device @2.2 GHz

nominal (1.8 GHz nominal with AVX2), with 64 GiB RAM, coupled with one NVidia GTX

1070 with 1920 CUDA cores and 8 GiB of GDDR5 memory (Pascal architecture).

• A dual-socket server with 16-core Intel Xeon E5-2683v4 Broadwell devices (BW) @2.1

GHz nominal (1.7 GHz nominal with AVX2), with 256 GiB RAM.

• A dual-socket server with 24-core Intel Xeon Platinum 8160 Skylake devices @2.1 GHz

nominal (1.4 GHz nominal with AVX-512), with 192 GiB RAM.

• A single-socket 64-core Intel Xeon Phi 7210 server @1.3 GHz nominal (1.1 GHz nominal

with AVX-512, KNL architecture with 4-way simultaneous multithreading), with 16 GiB

of eRAM, 192 GiB of RAM.

The code was compiled with the Intel 2018 compiler suite, the NVidia CUDA 8.0 toolkit

and ROOT 5.34.34. All servers used the CentOS 6.3 operating system. A k-best measurement

heuristic was used to ensure that the results can be replicated, with k = 5 with a 5% tolerance,

a minimum/maximum of 15/25 measurements.

4.3 Results and Discussion

The key quantitative evaluations performed to assess HEP-Frame performance related fea-

tures include:

• The dynamic tuning of DS and DP threads.

4.3. RESULTS AND DISCUSSION 91

• The impact of HEP-Frame multiprocess and multithreaded scheduler on multicore

servers.

• The use of accelerators: 1 or 2 KNC devices, 1 GPU Kepler.

• The performance of a KNL-based server with different configurations.

• A performance comparison of the KNL server versus multicore servers, with or without

accelerators (including a GPU).

• The scalability in a cluster of KNL servers.

• The scalability across heterogeneous servers (mix of multicore and manycore).

• A comparative evaluation of the HEP-Frame with StarPU.

4.3.1 Dynamic Tuning of DS and DP Threads

The dynamic tuning of DSt and DPt on a 12+12 core Ivy Bridge server is compared against 3

fixed configurations of DSt-DPt: 1-23, 12-12 and 22-2 (Figure 4.3).

Figure 4.3: Speedup of dynamic vs static tuning of DS and DP threads on a dual-socket server.

The dynamic tuning outperforms all fixed configurations, with over 4x speedup for ttH_-

as with 1 DSt, as the efficiency of this code is limited by the DSt. The impact on ttH_sci is

92 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

not so significant, since the computation is so complex that even with 1 DS thread the data

setup is completed while only 20% of the dataset was processed.

The ttH_as converges to a stable DS-DP configuration after loading 5% of the dataset

(converge to 22-2), while the other two converge after only 2.5% of the dataset (to 2-22 and 6-

18, respectively). An analysis of the scheduler with the Intel VTune profiler [80] showed that,

for the ttH_as latency-bound code, the DP threads were waiting for data to be loaded for less

than 10% of the overall data setup time.

4.3.2 Multithreading with and Without HEP-Frame

To assess the adequate amount of threads to be used by HEP-Frame in a multi-socket server,

a scalability evaluation of the framework was performed and is presented in Figure 4.4 us-

ing the t t̄ H analyses, which indicative of applications with different computational require-

ments, in a 12+12 core Ivy Bridge server. HEP-Frame was tested using a single thread per

physical core up to 24 cores, and 2 threads per core to use Intel 2-way simultaneous multi-

threading (Intel Hyper-Threading). Both compute-bound applications, ttH_sci and ttH_-

scinp, scale up to 24 cores with speedups up to 17.1x and 12.9x, respectively, while the

memory-bound ttH_as reaches a peak speedup of 3x for 8 cores and 2.7x for 24 cores. As

expected, the performance of the compute-bound applications increases almost linearly up

to 8 cores, with a slight decrease in this rate of improvement from 12 to 24 cores, when a

second multicore device is used and NUMA penalties apply.

The three t t̄ H analyses did not benefit from simultaneous multithreading, with signifi-

cant performance drops when using 48 threads over their highest speedup configuration. By

default, HEP-Frame uses one thread per physical core of the available multicore devices, as it

provided the best performance for ttH_sci and ttH_scinp, while having a small impact on

the performance of ttH_as when compared to its best speedup (2.7x on 24 cores vs 3x on 8

cores). The maximum amount of threads can be changed by the user to fit the computational

requirements of any specific application.

The performance of the multithreaded t t̄ H analyses implemented with OpenMP was

compared against their implementations in HEP-Frame, using one and two Xeon devices

4.3. RESULTS AND DISCUSSION 93

Figure 4.4: Scalability of the t t̄ H analyses with HEP-Frame on a dual-socket Ivy Bridge server.

of the Ivy Bridge, Broadwell and Skylake micro-architectures (Figure 4.5). Both parallelisa-

tions use a single thread per physical core on the server, as preliminary tests showed that

using Hyper-Threading did not provide significant performance improvements. HEP-Frame

significantly improved the performance of all multithreaded implementations:

ttH_as: up to 6x, mostly due to simultaneous DSt and DPt management.

ttH_sci and ttH_scinp: 15x and 17x speedups, respectively, mostly due to the pipeline re-

ordering and workload scheduler. DSt and DPt tuning does not have a big impact on

performance, as both analyses require few threads for the DS tasks, which is similar to

the OpenMP approach.

ttH_scinp: performance improvements mostly due to a worse initial pipeline order than

ttH_sci.

The Skylake server has the best performance of all these servers mostly due to its higher

core count, which is offset by its lower clock rate when compared to the Ivy Bridge server.

Generally, the performance of using a second multicore device in the same server did not

lead to a linear improvement due to the NUMA memory architecture. The data structures are

94 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Figure 4.5: Speedup of the parallel t t̄ H analyses with HEP-Frame vs a standard OpenMP par-
allelisation for the same number of threads on a server with single or dual multicore devices.

allocated in the memory bank of a single multicore device, which consistently causes higher

memory access latencies for threads on the other multicore devices. This limitation could be

overcome by using one process per multicore device, which would provide higher speedups

as there would be independent data structures in each memory bank. This approach is later

explored in Subsection 4.3.3.

The performance gap between HEP-Frame and OpenMP increases proportionally to the

number of cores in the server, as shown by the improved speedup when using dual Broadwell

and Skylake devices over a single device. This proves that the OpenMP dynamic scheduler,

which uses a task pool strategy, is not as efficient as HEP-Frame when dealing with a high

amount of threads, and that this improvement is not related to the pipeline reordering. Using

the OpenMP guided scheduler provided a similar behaviour.

The default order of the pipeline on the three t t̄ H analyses, as defined by the scientist

that developed them, already has most propositions that filter out most dataset elements in

the beginning and the heavier propositions in the final stages. Pipelined data stream applica-

tions with worse default pipeline orders would benefit more from the HEP-Frame pipeline re-

ordering scheduling layer. The aggregated overhead of all functions related to the HEP-Frame

multi-layer scheduler for ttH_as is 10%, and tends to decrease significantly for compute-

4.3. RESULTS AND DISCUSSION 95

bound code, as it is less than 5% for both ttH_sci and ttH_scinp.

HEP-Frame uses an array-of-structures type data structure that is not as efficient as a

structure-of-arrays for memory-bound code, which is the case of ttH_as. However, this

trade-off in performance is acceptable as it allows the framework to work with any type of

dataset elements provided by the user, requiring only a class-like representation of the data.

4.3.3 Multiprocess on Multi-Socket Servers

Multi-socket servers display an additional challenge to performance tuning due to the NUMA

architecture: each multicore device share its memory controller with the neighbouring de-

vice and may impose a potential bottleneck when there is no match between the core exe-

cuting the code and the memory device where data is placed (known as core affinity). One

way to avoid this situation is to allocate one multithreaded process to each device.

On the other hand, if a given application code contains a significant sequential part that

can not be parallelised, the multithreaded approach does not use all cores during the se-

quential part of the code. In this case, allocating a fully autonomous sequential process to

each core leads to a better overall performance. In between we need also to consider those

applications that are mostly parallel but that their memory requirements may create conflicts

among the core requests for data.

In pipelined data applications, such as those described in the presented case studies,

HEP-Frame can efficiently explore all available cores using a multithreaded approach, but

most likely the NUMA architecture may degrade the overall performance.

To test and validate these assumptions some experiments were devised: to compare a

fully multithreaded approach with a multiprocess approach on one and on two devices in a

server. Figure 4.6 shows the impact of allocating 2 multithreaded processes to a single device

and 1 multithreaded process to each device in a dual-socket server.

As expected, the performance slightly degraded when more processes were allocated to a

single device (down to 83%). When allocating a full process to each socket the data structures

are no longer shared among threads in different devices, avoiding the memory penalties of

NUMA, and the performance of the multiprocess implementation went up to 57% (ttH_-

96 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Figure 4.6: Comparative performance of a dual process vs. a single process implementation
on single and dual socket servers.

scinp in dual Ivy Bridge).

To assess the assumption that HEP-Frame adequately uses the available computational

resources in a single multicore device in a multithreaded environment, and that it suffers a

small performance penalty when using multiple processes in a single multicore device an

experiment was devised: compare the performance of HEP-Frame using 1 process against

using 4 processes for single- and dual-socket servers. Figure 4.7 presents the results of this

experiment using the case studies on 3 single-socket and 3 dual-socket multicore servers. Us-

ing 4 processes on single-socket servers greatly restricts the performance of all t t̄ H analyses,

as expected from the results of using 2 processes. The OpenMPI library used passes messages

between processes of the same node with very low communication overhead through shared

memory, but that is not enough to offset the costs of merging the results from 4 processes,

and tends to increase with the number of processes.

ttH_as, ttH_sci and ttH_scinp applications improve up to 17%, 24% and 16% over a

single process on the dual-socket servers, respectively. This improvement is lower than with

2 process, and is less consistent among different servers. Preliminary results showed that

using more processes further degraded the performance on both single- and multiple-socket

4.3. RESULTS AND DISCUSSION 97

servers.

Figure 4.7: Comparative performance of a 4 process vs. a single process implementation on
single and dual socket servers.

The overhead of balancing the input data files among the various threads is less than 5%

of the overall application execution time for 4 processes. A similar preliminary evaluation was

performed with other pipelined data stream applications from high energy physics, but the

performance improvement of using 2 processes in dual-socket servers was not consistent.

Due to this reason, automatic creation and management of multiple processes in a single

server is yet to be implemented in HEP-Frame.

4.3.4 Proposition Offload to Knights Corner Accelerators

The Xeon Phi KNC coprocessor can be used as a computing accelerator, namely for parallel

number crunching, due to the large number of cores and wider vector unit. However, the lack

of L3 cache suggest that this device may have its performance degraded in memory-bound

applications, such as ttH_as. To validate these assumptions, an experimental test compared

the performance of a server with one or two KNC accelerators against a server without any

accelerator. Figure 4.8 displays the experimental results, which confirmed the assumptions.
The KNC improved the performance up to 33% and 20% for the ttH_sci and ttH_scinp

applications, respectively. The overall best performance was obtained with 2 Xeon device and

98 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Figure 4.8: Speedup of the case studies in a HEP-Frame prototype on a server with one or two
Ivy Bridge (IB) devices with KNC accelerators vs the same server without accelerators.

2 KNC, 38% faster than 1 Xeon with 2 KNC, as the increased amount of multicore threads can

better utilise the resources of both accelerators. Using a single multicore device with 2 KNC

devices distributes the overhead of memory management and scheduling of the accelerators

through a smaller amount of multicore threads, which are not enough to hide these laten-

cies. However, the KNC did not improve the performance of ttH_as, as expected, as this is a

latency-bound code that does not have enough computation to use the KNC resources.

However, as already explained in Section 3.3.1, this implementation required modifying

data structures to be offloaded to the KNC, which must be developed specifically for each

different scientific code. At the moment, the HEP-Frame is not capable of generating this

code automatically based on the scientists proposition code, as is a too complex process to

be performed to be used only in a niche situation for marginal performance gains and is out

of the scope of this work. A detailed analysis of this implementation is available in [71].

4.3.5 Efficient Generation of PRN Batches

Pseudo-Random Number Generators (PRNGs) are a compute intensive task that may have a

significant impact on the performance of pipelined data stream applications. The use of an

4.3. RESULTS AND DISCUSSION 99

efficient implementation of a statistically sound PRNG, such as the Mersenne Twister, may

improve the performance of applications, specially, but not exclusively, when they require

large amount of Pseudo-Random Numbers (PRNs). An adequate management of the PRNs

may also have an impact on the performance of an application. Using a dual buffer to store

PRNs (referred to as DB in this subsection, whose implementation was previously described

in Subsection 3.3.2) it is expected to be more efficient than using a single buffer (SB), and

much faster than calling the PRNG whenever a PRN is required.

To assess these assumptions several implementations of the Mersenne Twister PRNG

were tested on the ttH_as, ttH_scinp and ttH_sci case studies in HEP-Frame, which re-

quire a small, moderate and a large amount of PRNs, respectively, on multiple multicore

servers with and without accelerators. The PCG RXS-M-XS PRNG (a linear congruential gen-

erator) was also tested since the authors claim a statistical quality similar to the Mersenne

Twister with a better computational performance [63]. The original code of these case stud-

ies used the TRandom3 PRNG available in ROOT, which may not be adequate to generate

large amounts of PRNs.

Figure 4.9 shows the speedup of the two 24-threaded versions of the t t̄ H analyses, using

the HEP-Frame scheduler with a single process in the server, with the selected PRNG algo-

rithms (one per physical core of the Xeon devices) and the different approaches for PRNG

concurrent execution, compared to the ROOT single number PRNG.

The efficient use of PRNGs provides larger performance improvements for the multi-

threaded ttH_sci, compared to its sequential execution. The use of a dual buffer vs single

PRN generation provides an overall improvement across all PRNGs, specially with a speedup

improvement from 42x to 48x for the PCG PRNG. The ttH_scinp behaves similarly to ttH_-

sci but with smaller improvements, up to 11x and 20x using using the MKL and PCG PRNGs,

respectively. The performance of the ttH_as was not degraded by the use of PRN buffers,

contrary to its sequential execution, with speedups up to 14% for the dual buffer PCG. Over-

all, the efficient use of PRNGs may provide a significant performance improvement on se-

quential and multicore applications. The usage of a dual buffer approach out-performs a

single buffer and may lead to significant performance improvements on parallel code.

100 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Figure 4.9: Speedup of the parallel t t̄ H analyses with different PRNG algorithms and ap-
proaches vs the original ROOT single number PRNG on the Ivy Bridge server.

Vectorization may have a significant impact on the performance of PRNGs, as the gener-

ation of a large amount of PRNs has the necessary characteristics to adequately explore this

optimisation. To assess the impact of vectorization on PRNGs, as well as the efficiency of

these algorithms on newer vector extensions, the performance of the t t̄ H analyses should be

tested on different multicore architectures. While the IB architecture only has AVX, the BW

devices use AVX2, which extends AVX by providing 256-bit wide vector operations on integers

and implements fused multiply addition.

Figure 4.10 shows the performance improvement of using the dual-socket BW server over

the IB server for the different on-device PRNGs using all available cores. The BW architecture

favours the ttH_as application, as the code takes advantage of the extra cores to parallelise

the reading of input data files, which is its main bottleneck. The single buffer approach is

favoured for all PRNGs as one buffer is enough to hold all PRNs needed by this application.

Further profiling showed that both ttH_sci and ttH_scinp improvements are not mainly

caused by the additional cores but the usage of an improved vectorization instruction set

(AVX on IB vs AVX2 on BW), specially by the MKL PRNG. ROOT PRNGs also improve, but are

still far behind PCG and MKL in their overall performance. AVX2 improves the efficiency of

4.3. RESULTS AND DISCUSSION 101

Figure 4.10: Performance comparison of the Broadwell server vs the Ivy Bridge server.

PRNGs over AVX, which is significant considering that the BW clock is up to 700 MHz lower

than the IB server when executing vector instructions.

Hardware accelerators are often designed to improve the performance of highly parallel

code that operates on independent data. There are several implementations available of the

Mersenne Twister PRNG specially tuned for the hardware characteristics of GPU and KNC

devices. A Kepler and Pascal GPUs, and a KNC coprocessor were used to assess the efficiency

of these devices to generate large amounts of PRNs on the case studies (Figure 4.11), using

efficient implementations of the Mersenne Twister in cuRAND and MKL libraries. Offload-

ing PRNG to these accelerators frees computational resources on the multicore devices to be

used by other computations of the t t̄ H analyses. Additional KNL and IB servers were also

used to offload the PRNG, to ensure that the performance improvements obtained using the

accelerators were not only due to the increase in computational resources allocated to the

t t̄ H analyses. The speedups of the 10-core Pascal server were extrapolated to 24-cores to

get an insight in how the Pascal and Kepler devices compare. It was not possible to mount

the desktop Pascal GPU device on the IB server since it is a node in a computing cluster that

requires GPUs with specific cooling solutions. Both Pascal and Kepler GPUs provide perfor-

102 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

mance improvements up to 70x and 12x for the ttH_sci and ttH_scinp applications, re-

spectively. A similar behaviour is observed with the KNC and KNL devices, with speedups

of 47x and 51x for the ttH_sci and ttH_scinp applications, respectively. Using an extra IB

server provides an improvement of 65x and 11x for these applications. The performance of

the ttH_as application was decreased by 2x as its lack of heavy computations and need for

PRNs is not enough to hide the costs of the memory transfers over PCI-Express and ethernet.

The use of a dual buffer vs a single PRN/buffer is crucial to minimise the impact of the

PRN transfer from the devices to the host server. The GPU devices and the IB server over

ethernet spent > 90% of the PRNG time on transferring the PRNs to the host device, while

manycore devices spent 80% of their execution time. The overall higher speedups, compared

to using only the host server, are due to the higher availability of the Xeon cores to perform

application specific computations, since they were freed from generating PRNs.

Figure 4.11: Speedup of the parallel applications with different PRNG algorithms using exter-
nal computing devices vs the original ROOT single number PRNG.

The PRNG throughput using the Mersenne Twister of various multicore, manycore and

accelerator devices is compared in Figure 4.12: dual buffer MKL for the dual-socket IB, dual-

socket BW, KNC and KNL servers; dual buffer cuRAND for Pascal and Kepler Nvidia GPUs.

4.3. RESULTS AND DISCUSSION 103

This comparison assesses the performance of each device, regardless of the application that

the PRNG is integrated in, while measuring the impact that PCI-Express and ethernet have

when accounted for the PRN throughput. The red bar considers each device PRN throughput,

while the blue takes into account data transfer times over their respective interconnection.

The single-socket BW server was not considered since the dual-socket BW server provides

better performance for the same CPU device architecture.

Figure 4.12: Throughput of the best PRNG for each different server and accelerator device.

The BW server is 18% faster than the IB server mostly due to the better vectorization oper-

ations available in its AVX2 instruction set. However, the performance does not scale linearly

due to the lower clock rate of the BW server and the amount of PRNs requested is not enough

to take advantage of the extra cores. The performance of both IB and BW servers is greatly

degraded when the PRNs have to be transferred through ethernet. The Pascal and Kepler de-

vices provide a throughput around 46M PRNs per second (justifying their similar speedup for

the ttH_sci application), but their limited to only 0.54M PRNs per second due to the bot-

tleneck of the PCI-Express interface. A similar bottleneck is observed with the KNL and KNC

manycore devices over their respective interconnections, but their on device PRN through-

put is the lowest of all tested devices, as they have the lower clock speeds and MKL cannot

104 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

fully utilise the available vector processing units.

Accelerator devices provide great PRN throughput while freeing the host CPU devices to

perform other calculations, which is a crucial factor to improving the performance of the

case studies previously presented. The desktop Pascal GPU provided similar performance

to the server-grade Kepler device, as the improvements in the architecture and clock rate

overcome the lack of CUDA cores, while being significantly cheaper. Offloading PRNGs to

KNL, IB and BW servers should also be considered if a lower latency interconnection is used,

such as Myrinet and InfiniBand.

These tests prove that data stream applications that require a huge amount of PRNs can

greatly benefit by efficiently using PRNGs, regardless of the server architecture and configu-

ration in which they will execute. It is crucial that frameworks, such as HEP-Frame, provide

efficient implementations for commonly used functions as is the case of PRNGs. The PCG

PRNG was the best performing when using only multicore devices to process both the appli-

cation code and PRNG. However, the PCG suite uses a more computationally efficient algo-

rithm than the Mersenne Twister, which may not be a fair comparison. It is the responsibility

of the end user to assess if this PRNG should be used over other traditional PRNGs, which are

well accepted and extensively tested by the mathematics’s community.

An in-depth analysis of all the details related to different PRNGs and their efficiency in

various computing devices can be found in [13]. The best PRNG for each server configuration

will be used in the tests of the next subsections, so that the evaluation of HEP-Frame is not

biased by the inefficient ROOT PRNG.

4.3.6 HEP-Frame in a Manycore KNL Server

The mesh structure that interconnects the compute tiles and the memory organisation of the

KNL package is configured in boot time. Each tile is a dual core PU, sharing cache L2; the KNL

package also includes 8 chips of configurable embedded RAM (eRAM). KNL configurations

were detailed in Subsection 2.1.2.

Experimental tests evaluated the performance of the t t̄ H scheduler on the KNL server

with 4 processes and a total of 64, 128 and 256 threads. Figure 4.13 show the results compared

4.3. RESULTS AND DISCUSSION 105

against the original multicore scheduler with 24 threads on the dual 12-core IB server.

Figure 4.13: Speedup of KNL server configurations vs the multicore dual-socket IB server.

Results show that:

• The best configuration for the computing tiles is the quadrant/SNC mode.

• eRAM as flat addressable RAM was the best across all cluster configurations. eRAM as

cache decreases performance (10-30% in all case studies), as this type of code reuses

little data (independent processing of each dataset element).

• The peak speedup of 4.6x over the multicore server for the ttH_sci, with 128/256

threads, are mostly due to the vectorization capabilities, larger overall L2 cache of this

device and 4 independent processes with its own DS.

• The all-to-all clustering mode was 2x slower than the quadrant/SNC-4 configurations.

The multicore scheduler assigns a combination of a proposition and a dataset element

to each thread at a time, reducing the use of vectorizable code on this server. However, the

simplified reordering approach on the KNL server did not take advantage of the inefficient

ttH_scinp pipeline, as the complex scheduler on the multicore does: the speedups are not

as high as in the ttH_sci (1.2x).

106 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Figure 4.14 compares the performance of the KNL server with three different multicore

servers without accelerators (with Ivy Bridge, Broadwell and Skylake devices), and the Ivy

Bridge server with one Kepler GPU.

Figure 4.14: Speedup of the KNL server vs 3 multicore dual-socket servers and a 4th with a
Kepler GPU.

The ttH_sci application running with 128/256 threads on the KNL outperforms the mul-

ticore servers with speedups up to 5.5x. However, it only improved by 3x compared to the

server with a Kepler GPU, as a significant part of the execution time of this application (PRNG)

is accelerated by this device. The memory-bound ttH_as does not improve as the KNL is de-

signed for highly parallel and vectorizable compute-bound code.

Multiple Servers

Figure 4.15 shows the scalability of the case studies on HEP-Frame for 2, 4 and 6 KNL servers,

when compared to a single server.

As expected, the memory-bound ttH_as analysis scales less with the increase in process-

ing power, as the performance improvements are provided by the increase in memory and

I/O bandwidth for the file reading and data structure creation and pre-processing. ttH_-

scinp scales better than ttH_as, with an almost linear speedup up to 4 servers. Beyond this

it does not scale as well, as more DS threads are required by the increased computational

throughput, leaving less room for DP threads. ttH_sci, the most compute intensive applica-

4.3. RESULTS AND DISCUSSION 107

Figure 4.15: Speedup of the case studies for 2, 4 and 6 KNL servers vs a single KNL server.

tion, scales better than the other case studies with a speedup of 1.9x, 3.9x and 5.6x for 2, 4 and

6 servers, respectively. The scalability of using 2, 4 and 6 multicore Xeon servers is similar to

the presented results.

4.3.7 HEP-Frame vs. StarPU

Figure 4.16 compares the performance of the HEP-Frame scheduler with the HEFT dm sched-

uler in StarPU, the most common list scheduler for these applications, on both a KNL server

and a single dual-socket Xeon server. The case studies depend on the ROOT framework,

which prevented the port of the code to NVidia GPUs, as was discussed in Section 4.1. How-

ever, the HEFT scheduling efficiency is the same when dealing with multiple multicore/-

manycore devices on a server with or without accelerators.

On both Xeon and KNL servers the HEP-Frame scheduler outperformed StarPU. ttH_-

sci had only a 50% improvement on HEP-Frame as this code benefited less from reordering

(the most compute intensive proposition is at the end of the pipeline, while the most filtering

are at the beginning by default) and behaved more as a regular compute-bound application,

where the last proposition took 70% of the analysis execution time.

The speedup went to 2.5x for the ttH_scinp analysis, as it benefited the most from the

proposition reordering in HEP-Frame, since the default order was not as good as in ttH_sci.

108 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Figure 4.16: Speedup of the HEP-Frame scheduler vs the HEFT scheduler in StarPU on the
KNL manycore server and a dual-socket IB server.

The StarPU HEFT scheduler also executed the propositions out-of-order, but only based on

the throughput of each computing device. StarPU was less efficient with memory-bound

code, as shown by the speedup of using HEP-Frame for ttH_as, which was achieved by

adapting the amount of DS threads accordingly. This behaviour was expected since memory-

bound code is not the target application type of StarPU.

The dynamic tuning of DS and DP threads accounted for up to 2x speedup of HEP-Frame

over StarPU. Both HEP-Frame and StarPU behaved similarly on KNL and the Xeon servers,

with only a minor advantage of HEP-Frame on the KNL for ttH_sci over the Xeon (58% vs

39% better than StarPU, respectively).

4.3.8 Overall Performance vs. the Original Case Studies

Figure 4.17 compares the performance of the three case studies implemented on HEP-Frame

with their original sequential implementation on the best multicore servers (with dual Broad-

well and Skylake devices), Ivy Bridge server with a Kepler GPU, and the KNL server.

HEP-Frame was set to use only one process per server, its default configuration, but, as

shown in Subsection 4.3.4, using multiple processes in a multi-socket server may provide

even larger overall speedups. HEP-Frame provided a significant performance improvement

4.3. RESULTS AND DISCUSSION 109

Figure 4.17: Overall speedup of the case studies on HEP-Frame vs their original sequential
implementations.

for every case study, confirming it is portable across multiple platforms with crucial architec-

tural differences. It adapted well to irregular compute-bound code, with speedups up to 252x

and 185x for the ttH_sci and ttH_scinp applications on the KNL server. It also efficiently

handled the memory-bound ttH_as application, with a speedup 30x for every server, due

to its dynamic tuning of DS and DP threads. Note that for this final evaluation, the original,

very inefficient, ROOT PRNG was replaced by the single number MKL PRNG to ensure a fair

comparison with HEP-Frame.

The KNL server outperformed every other server mainly due to its core count and greater

vectorization capabilities: two AVX-512 vector units per core, while Skylake has only one AVX-

512 vector unit and Broadwell and Skylake have AVX units to operate on 256 bits. These two

also suffered significant down clock frequency due to the AVX instructions, which is less se-

vere on the KNL.

Another contribution for the performance gap between KNL and the multicore servers

was the KNL configuration as SNC-4, which forced HEP-Frame to schedule 4 processes to

the KNL device, reducing thread synchronisations and data consistency overheads. The gap

could be reduced if the user had defined a similar multiprocess approach to the dual-socket

110 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

servers.

4.4 Summary

The t t̄ H analysis code is a set of three applications used by high energy physicists at CERN,

and it was chosen a case study representative of a wide set of pipelined data stream ap-

plications. The three versions of the t t̄ H analyses, ttH_as, ttH_sci and ttH_scinp, have

pipelines with 18 propositions in a good default order as defined by the developers. The for-

mer analysis is latency-bound, as very little processing is performed by the pipeline, while

the latter two are compute-bound, where ttH_scinp displays 2 different propositions and a

worse default pipeline order. These analyses depend on functions of the ROOT framework,

which limits the portability of propositions to GPU devices. The t t̄ H analyses are originally

sequential, but a multithreaded map-reduce parallelisation with OpenMP, common in the

scientific community, and with StarPU was performed to provide a thread-by-thread com-

parison with HEP-Frame.

The dynamic tuning of the amount of threads for data setup and data processing provided

significant speedups over the conventional strategy of loading data and then processing it,

with an improvement up to 4.3x and 2.9x for the ttH_as and ttH_scinp applications. The

most compute intensive application, ttH_sci, did not benefit as much as the data setup

accounts for a small percentage of the overall execution time.

The pipeline parallelisation and reordering provided significant performance improve-

ments for all t t̄ H analyses over an OpenMP parallelisation using the same amount of threads.

ttH_as, ttH_sci and ttH_scinp improved by up to 6x, 15x and 17x, respectively, for the dual

24-core Skylake server. ttH_as had the smallest improvements as it is latency-bound, while

ttH_scinp had the biggest improvement due to its worse default pipeline order. The per-

formance improvements could be greater for pipelined data stream applications with worse

default pipeline orders. The performance improvement of these analyses can improve by

50% if two processes are used in the dual-socket servers, as this approach avoids the memory

latency penalties of NUMA.

4.4. SUMMARY 111

HEP-Frame can take advantage of KNC and GPU accelerators: the first for proposition

offload and PRNG acceleration, while the second only for PRNG acceleration. The KNC

only provided speedups up to 33% and 22% for the ttH_sci and ttH_scinp applications,

respectively, while degrading the ttH_as performance by 27%. The use of Kepler and Pascal

GPUs improved the performance of the ttH_sci and ttH_scinp by 70x and 12x, respectively,

whose improvement is proportional to the amount of PRNs required by each of these appli-

cations. HEP-Frame can also offload the PRNG to KNC and multicore/manycore servers, but

providing a smaller improvement than using GPUs.

The performance of ttH_sci and ttH_scinp is improved by 2.9x and 2.5x, respectively,

on the KNL manycore server when compared to the best heterogeneous server, the dual-

socket Ivy Bridge server with a Kepler GPU. The performance of the latency-bound ttH_as

is similar in both servers. HEP-Frame is faster than StarPU, its closest competitor, for all t t̄ H

analyses on both KNL and Ivy Bridge servers, with speedups between 1.4x and 2.5x.

HEP-Frame improves the performance of the ttH_as, ttH_sci and ttH_scinp applica-

tions on the KNL server by 30x, 252x and 185x, respectively, over their original sequential

implementation. It also improves the performance of these applications by 32x, 89x and 74x

for an Ivy Bridge server with a Kepler GPU. HEP-Frame ensures efficient execution of both

memory- and compute-bound pipelined data stream applications portable across various

homogeneous and heterogeneous servers with accelerators, without requiring any modifica-

tion of the code, configuration by the user, or prior knowledge of the server characteristics.

112 CHAPTER 4. HEP-FRAME PERFORMANCE EVALUATION

Chapter 5

Conclusions and Future Work

This chapter shares the final thoughts and conclusions on the work presented in this

document. The research work presented in the previous chapters is revisited and sum-

marised, with a look into the most relevant results.

Finally, a view on several possible research paths to further improve this work is

presented.

113

114 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

This key component of this thesis work is HEP-Frame, a framework to aid the develop-

ment and efficient execution of pipelined data stream applications in homogeneous and

heterogeneous servers. Pipelined data streaming is commonly used in the non-computer

scientific community, where researchers develop I/O-, memory-, or compute-bound appli-

cations to analyse large amounts of data. Performance is key for this type of applications, but

researchers often lack the expertise to efficiently parallelise their code, specially for heteroge-

neous servers, as the programming paradigm and available frameworks have steep learning

curves. The goal of this framework was to provide an user-centred development interface,

through the use of code skeletons, automatic code generation, and automation of the com-

pilation process, while transparently managing the efficient parallel execution of the code on

multicore, manycore, and accelerator devices.

HEP-Frame was evaluated with three versions of a real world application: the t t̄ H parti-

cle physics event data analysis, developed and used by CERN researchers, ported into HEP-

Frame by the scientists who designed the code. The main component of HEP-Frame is its

multi-layer scheduler, each layer performing a different action:

• The top layer balances data and workloads among servers in a heterogeneous cluster

environment. It scaled for both memory- and compute-bound codes, in either mul-

tiple homogeneous or multiple heterogeneous servers. The compute-bound ttH_sci

application improved by 1.9x, 3.9x, and 5.6x when using 2, 4, or 6 servers, respectively.

• The middle layer dynamically tunes the number of threads assigned to the parallel

data read and setup (DS), including the creation of adequate data structures, and the

pipeline execution (DP). It provided speedups up to 4x, when compared to a fixed con-

figuration of DS and DP threads, for the same amount of total threads.

• The bottom layer addresses the scheduling at the server level, managing the parallel ex-

ecution of the dataset workload among the available computing resources in a server.

This layer includes the reordering of the pipeline propositions of the same dataset el-

ement and the parallel execution of multiple dataset elements, ensuring that pipeline

propositions that filter out most elements are executed as early as possible. The perfor-

115

mance of ttH_sci and ttH_scinp was improved by 15x and 17x, respectively, over an

OpenMP paralellisation, which was mostly due to the pipeline reordering and parallel

proposition execution in this layer.

The HEP-Frame PRNG management was tested by offloading the generation to additional

multicore and manycore servers, as well as Kepler and Pascal NVidia GPUs and the KNC co-

processor. For ttH_sci, the most PRN intensive case study, he use of a proper PRNG and

management strategy provided speedups up to 70x, using Kepler and Pascal GPUs, over the

inefficient ROOT PRNG on the original application code. The ROOT PRNG was not used for

any of the remaining tests. The Kepler GPU PRNG achieved almost 2x performance improve-

ment over the most efficient multicore PRNG on an Ivy Bridge server for the same case study;

for the other t t̄ H versions the speedup was marginal as they do not rely as much on PRNs.

The HEP-Frame scheduler for the KNL manycore server provided speedups up to 5.5x,

4.8x and 3.2x compared to a homogeneous multicore server, respectively two Ivy Bridge, two

Broadwell and two Skylake devices, for the ttH_sci application. The KNL server also out-

performed the Ivy Bridge server with a Kepler GPU accelerator, by 3x and 2.5x for ttH_sci

and ttH_scinp applications, respectively. Although the KNL architecture was not designed

to efficiently handle latency-bound code, the HEP-Frame scheduler ensured that the ttH_as

application on the KNL server ran with the same performance as the multicore servers.

HEP-Frame outperforms StarPU, a competitive framework that targets a broader range of

applications, on both multicore and manycore servers. ttH_as and ttH_scinp improved up

to 1.9x and 2.5x, respectively, due to the middle and bottom layers of HEP-Frame scheduler

on the Ivy Bridge server. ttH_sci only improved by 1.4x, as it benefits less from the pipeline

reordering, which results on a scheduling strategy similar to StarPU.

Overall, HEP-Frame improved the performance of the ttH_sci and ttH_scinp appli-

cations 252x and 185x on the manycore server, while ttH_as improved by 30x across all

servers, over the original sequential code using the MKL single number PRNG. Compar-

ing HEP-Frame with the original t t̄ H versions using the ROOT PRNG would provide big-

ger speedups but would not be indicative of the benefits of using the multi-layer scheduler.

Pipelined data stream applications with worse pipeline orders by default would see even

116 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

greater speedups.

Given the performance of the HEP-Frame in the t t̄ H analysis, its use was extended to 6

analyses related to:

• t t̄ production at the LHC, in both the semileptonic and dileptonic final states.

• Single top quark production through the t-channel and the W t-channel in either semi-

leptonic and dileptonic final states.

HEP-Frame allowed, for the first time, to use a common framework across several physics

groups in ATLAS (Single Top Group and Top Properties Group, as well as the Higgs Group),

which otherwise would not be possible, as each group tends to use specific file formats and

code structures. This increase in performance largely covers the expected increase of com-

putational resources required to explore data analysis during the third and fourth run of the

high luminosity phase at the LHC, as previously described in Section 1.1.

5.1 Future Work

This dissertation focused on providing a tool to aid the development of pipelined data stream

applications, specially for non-computer scientists, while ensuring efficient and portable ex-

ecution of the code across various homogeneous and heterogeneous servers. However, there

are still improvements that can be made to HEP-Frame in both fronts.

There are two key features that should be implemented to streamline the development

of applications in HEP-Frame. The use of external tools (addressed as plugins throughout

this document) at compile time has to be integrated into the HEP-Frame compiling process

by adding them into specific sections of key Makefiles. A more intuitive and elegant solu-

tion would be to create an interface, such as a XML configuration file, where the user would

specify which tool would be used in a given stage of the compilation process. A XML con-

figuration would allow the definition of inputs and expected outputs of the plugins, which

would be managed by a HEP-Frame compiling assistant. These configuration files would be

distributed with the plugins to ensure plug-and-play installation and portability.

5.1. FUTURE WORK 117

In the current version of HEP-Frame, users have to manually identify and indicate data

dependencies to the framework to ensure the code correctness when reordering the pipeline.

However, from our experience working with particle physicists, non-computer scientists of-

ten lack the expertise to clearly identify every data dependency in complex propositions. A

plugin that parses the code files with the pipeline propositions and automatically infers data

dependencies could be integrated into HEP-Frame, which would later be used by the multi-

layer scheduler without any user interaction. This would free users from a tedious and error-

prone task.

The results in Subsection 4.3.3 indicate that the performance of some pipelined data

stream applications could benefit from using multiprocess parallelisation in multi-socket

servers. This approach has to be tested with more case studies to find and implement into

HEP-Frame an adequate heuristic to create and manage a suitable amount of processes for

memory- and compute-bound code.

Some pipeline data stream applications present propositions that, depending on their

result, can lead to the execution of different subsequent propositions. These propositions

can be defined in nested pipelines, where the result of a proposition can lead to the execution

of different sub-pipelines, in addition to the filtering out of dataset elements. The execution

flow of these nested pipelines can be defined as k-ary trees, whose scheduling for parallel

execution on homogeneous and heterogeneous servers is not widely researched by the HPC

community. Allowing the coding and efficient execution of nested pipelines in HEP-Frame is

crucial to ensure that the framework can be used by a wider scientific community. Support

for nested pipelines is currently being developed in HEP-Frame.

HEP-Frame currently supports data streaming into a single data structure, whose ele-

ments are defined by a C++ class provided by the user. However, some applications use mul-

tiple input streams of data with different structures, where the execution of certain proposi-

tions requires that one of the data structures is complete while another is streamed in. Such

is the case of several matrix-matrix operations present in query execution in linear algebra

based systems. Support for this type of I/O would allow HEP-Frame to be used by a wider

computer science community.

118 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

References

[1] “NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110/210,”

NVidia, Santa Clara, California, USA, Tech. Rep., 2014. [On-

line]. Available: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[2] C. Lomont, “Introduction to Intel Advanced Vector Extensions,” Intel White Paper, pp.

1–21, 2011.

[3] S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! Technology: Architecture and Im-

plementations,” IEEE Micro, vol. 19, no. 2, pp. 37–48, 1999.

[4] Z. Merali, “Computational Science: ...Error,” Nature International Weekly Journal of Sci-

ence, vol. 467, pp. 775–777, October 2010.

[5] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson, “How

do Scientists Develop and Use Scientific Software?” in 2009 ICSE Workshop on Software

Engineering for Computational Science and Engineering, May 2009, pp. 1–8.

[6] P. Prabhu, H. Kim, T. Oh, T. B. Jablin, N. P. Johnson, M. Zoufaly, A. Raman, F. Liu,

D. Walker, Y. Zhang, S. Ghosh, D. I. August, J. Huang, and S. Beard, “A Survey of the

Practice of Computational Science,” in SC ’11: Proceedings of 2011 International Confer-

ence for High Performance Computing, Networking, Storage and Analysis, Nov 2011, pp.

1–12.

119

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

120 REFERENCES

[7] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, “Software Development Environ-

ments for Scientific and Engineering Software: A Series of Case Studies,” in 29th Inter-

national Conference on Software Engineering (ICSE’07), May 2007, pp. 550–559.

[8] J. Catmore, J. Cranshaw, T. Gillam, E. Gramstad, P. Laycock, N. Ozturk, and G. A. Stewart,

“A new petabyte-scale data derivation framework for ATLAS,” Journal of Physics: Confer-

ence Series, vol. 664, no. 7, p. 072007, dec 2015.

[9] A. Di Girolamo, “The ATLAS Distributed Computing Project for LHC Run-2 and Beyond,”

PoS, vol. EPS-HEP2015, p. 260, 2015.

[10] F. H. Barreiro Megino, “The Future of Distributed Computing Systems in ATLAS:

Boldly Venturing Beyond Grids,” Tech. Rep., Jun 2018. [Online]. Available: https:

//cds.cern.ch/record/2627546

[11] T. F. Pfleiger, A. E. Kimball, and A. A. Desai, “Distributed Query Engine Pipeline Method

and System,” Dec. 30 2008, uS Patent 7,472,112.

[12] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A Framework for Partitioning and

Execution of Data Stream Applications in Mobile Cloud Computing,” ACM SIGMETRICS

Performance Evaluation Review, vol. 40, no. 4, pp. 23–32, 2013.

[13] A. Pereira and A. Proenca, “Efficient Use of Parallel PRNGs on Heterogeneous Servers,”

in Proceedings of the International Conference on Mathematical Applications. Institute

of Knowledge and Development, 2018, pp. 7–12.

[14] A. Pereira, A. Onofre, and A. Proenca, “Tuning Pipelined Scientific Data Analyses for Ef-

ficient Multicore Execution,” in Proceedings of the International Conference on High Per-

formance Computing Simulation (HPCS). IEEE, 2016, pp. 751–758.

[15] ——, “HEP-Frame: A Software Engineered Framework to Aid the Development and Ef-

ficient Multicore Execution of Scientific Code,” in Proceedings of the 2015 International

Conference on Computational Science and Computational Intelligence. IEEE, 2015, pp.

615–620.

https://cds.cern.ch/record/2627546
https://cds.cern.ch/record/2627546

REFERENCES 121

[16] ——, “Removing Inefficiencies from Scientific Code: The Study of the Higgs Boson Cou-

plings to Top Quarks,” in Proceedings of the 14th International Conference on Computa-

tional Science and Its Applications. Springer International Publishing, 2014, pp. 576–

591.

[17] “An Introduction to the Intel QuickPath Interconnect,” Intel, Santa Clara, California,

USA, Tech. Rep., 2009. [Online]. Available: https://www.intel.com/content/dam/doc/

white-paper/quick-path-interconnect-introduction-paper.pdf

[18] K. Lepak, G. Talbot, S. White, N. Beck, S. Naffziger, S. FELLOW et al., “The Next Genera-

tion AMD Enterprise Server Product Architecture,” IEEE Hot Chips, vol. 29, 2017.

[19] R. R. Schaller, “Moore’s Law: Past, Present and Future,” IEEE spectrum, vol. 34, no. 6, pp.

52–59, 1997.

[20] T. Boku, M. Sato, M. Matsubara, and D. Takahashi, “OpenMPI-OpenMP Like Tool for

Easy Programming in MPI,” in Sixth European Workshop on OpenMP, 2004, pp. 83–88.

[21] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu, “Test-Driving Intel Xeon

Phi,” in Proceedings of the 5th ACM/SPEC international conference on Performance engi-

neering. ACM, 2014, pp. 137–148.

[22] J. Ajanovic, “PCI Express (pcie) 3.0 Accelerator Features,” Intel Corporation, vol. 10, 2008.

[23] B. Thompto, “POWER9: Processor for the Cognitive Era,” in Hot Chips 28 Symposium

(HCS), 2016 IEEE. IEEE, 2016, pp. 1–19.

[24] TOP500.org, “TOP500 List - November 2018.” [Online]. Available: https://www.top500.

org/list/2018/11/

[25] ——, “GREEN500 List - November 2018.” [Online]. Available: https://www.top500.org/

green500/list/2018/11/

[26] T. Instruments, “Digital Signal Processors.” [Online]. Available: http://www.ti.com/

processors/digital-signal-processors/overview.html

https://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.top500.org/list/2018/11/
https://www.top500.org/list/2018/11/
https://www.top500.org/green500/list/2018/11/
https://www.top500.org/green500/list/2018/11/
http://www.ti.com/processors/digital-signal-processors/overview.html
http://www.ti.com/processors/digital-signal-processors/overview.html

122 REFERENCES

[27] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell, G. Magk-

lis, A. Martinez, N. Prémillieu, A. Reid, A. Rico, and P. Walker, “The ARM Scalable Vector

Extension,” CoRR, vol. abs/1803.06185, 2018.

[28] S. Mittal, “A Survey of FPGA-based Accelerators for Convolutional Neural Networks,”

Neural Computing and Applications, 09 2018.

[29] D. P. Kaz Sato, Cliff Young, “An In-Depth Look at Google’s First Tensor Process-

ing Unit (TPU).” [Online]. Available: https://cloud.google.com/blog/products/gcp/

an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

[30] D. S. Modha, “Introducing a Brain-Inspired Computer.” [Online]. Available:

http://www.research.ibm.com/articles/brain-chip.shtml?utm_source=Abundance%

20Insider&utm_medium=email&utm_term=Computing&utm_content=Computing&

utm_campaign=8%2F27

[31] G. Synek, “Intel Nervana is a Neural Network Processor to

Accelerate AI.” [Online]. Available: https://www.techspot.com/news/

71453-intel-nervana-neural-network-processor-accelerate-ai.html

[32] “CERN Annual report 2017,” CERN, Geneva, Tech. Rep., 2018. [Online]. Available:

https://cds.cern.ch/record/2624296

[33] S. Andringa et al., “Current Status and Future Prospects of the SNO+ Experiment,” Adv.

High Energy Phys., vol. 2016, p. 6194250, 2016.

[34] D. Akerib, X. Bai, S. Bedikian, A. Bernstein, A. Bolozdynya, A. Bradley, S. Cahn, D. Carr,

J. Chapman, K. Clark et al., “The LUX Prototype Detector: Heat Exchanger Develop-

ment,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 709, pp. 29–36, 2013.

[35] The Pierre Auger Collaboration, “Search for High-energy Neutrinos from Binary

Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
http://www.research.ibm.com/articles/brain-chip.shtml?utm_source=Abundance%20Insider&utm_medium=email&utm_term=Computing&utm_content=Computing&utm_campaign=8%2F27
http://www.research.ibm.com/articles/brain-chip.shtml?utm_source=Abundance%20Insider&utm_medium=email&utm_term=Computing&utm_content=Computing&utm_campaign=8%2F27
http://www.research.ibm.com/articles/brain-chip.shtml?utm_source=Abundance%20Insider&utm_medium=email&utm_term=Computing&utm_content=Computing&utm_campaign=8%2F27
https://www.techspot.com/news/71453-intel-nervana-neural-network-processor-accelerate-ai.html
https://www.techspot.com/news/71453-intel-nervana-neural-network-processor-accelerate-ai.html
https://cds.cern.ch/record/2624296

REFERENCES 123

Observatory,” The Astrophysical Journal Letters, vol. 850, no. 2, p. L35, 2017. [Online].

Available: http://stacks.iop.org/2041-8205/850/i=2/a=L35

[36] “An Updated Set of Basic Linear Algebra Subprograms (BLAS),” ACM Trans. Math. Softw.,

vol. 28, no. 2, pp. 135–151, Jun. 2002.

[37] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang, “Intel Math Kernel

Library,” in High-Performance Computing on the Intel Xeon Phi. Springer, 2014, pp.

167–188.

[38] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “ScaLAPACK: a Scalable Linear Al-

gebra Library for Distributed Memory Concurrent Computers,” in [Proceedings 1992]

The Fourth Symposium on the Frontiers of Massively Parallel Computation, Oct 1992,

pp. 120–127.

[39] H. Jasak, A. Jemcov, Z. Tukovic et al., “OpenFOAM: A C++ Library for Complex Physics

Simulations,” in International workshop on coupled methods in numerical dynamics,

vol. 1000. IUC Dubrovnik, Croatia, 2007, pp. 1–20.

[40] L. Dagum and R. Menon, “OpenMP: an Industry Standard API for Shared-Memory Pro-

gramming,” IEEE Computational Science and Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[41] NVidia, “Cublas Library,” NVIDIA Corporation, Santa Clara, California, vol. 15, no. 27,

p. 31, 2008.

[42] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse Library,” in GPU Tech-

nology Conference, 2010.

[43] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shel-

hamer, “cudnn: Efficient Primitives for Deep Learning,” arXiv preprint arXiv:1410.0759,

2014.

[44] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “OpenACC — First Experiences With

Real-World Applications,” in European Conference on Parallel Processing. Springer,

2012, pp. 859–870.

http://stacks.iop.org/2041-8205/850/i=2/a=L35

124 REFERENCES

[45] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A Hybrid Multi-Core Parallel Programming

Environment,” in Workshop on general purpose processing on graphics processing units

(GPGPU 2007), vol. 28, 2007.

[46] T. Urhan and M. J. Franklin, “Dynamic Pipeline Scheduling for Improving Interactive

Query Performance,” in Proceedings of the 27th International Conference on Very Large

Data Bases. Morgan Kaufmann Publishers Inc., 2001, pp. 501–510.

[47] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom, “Adaptive Ordering of

Pipelined Stream Filters,” in Proceedings of the ACM SIGMOD International Conference

on Management of Data. ACM, 2004, pp. 407–418.

[48] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-grained Task, Data, and

Pipeline Parallelism in Stream Programs,” in Proceedings of the 12th International Con-

ference on Architectural Support for Programming Languages and Operating Systems.

ACM, 2006, pp. 151–162.

[49] H. Arabnejad and J. G. Barbosa, “List Scheduling Algorithm for Heterogeneous Systems

by an Optimistic Cost Table,” IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 3, pp. 682–694, March 2014.

[50] C. Min and Y. I. Eom, “Dynamic Scheduling of Irregular Stream Programs toward Many-

Core Scalability,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 6,

pp. 1594–1607, 2015.

[51] Y. Liu, L. Meng, I. Taniguchi, and H. Tomiyama, “Novel List Scheduling Strategies for

Data Parallelism Task Graphs,” International Journal of Networking and Computing,

vol. 4, no. 2, pp. 279–290, 2014.

[52] J. C. Beard, P. Li, and R. D. Chamberlain, “RaftLib: A C++ Template Library for High Per-

formance Stream Parallel Processing,” The International Journal of High Performance

Computing Applications, vol. 31, no. 5, pp. 391–404, 2017.

REFERENCES 125

[53] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin, “StreamBox:

Modern Stream Processing on a Multicore Machine,” in 2017 USENIX Annual Technical

Conference. USENIX, 2017, pp. 617–629.

[54] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: a Unified Platform

for Task Scheduling on Heterogeneous Multicore Architectures,” Concurrency and

Computation: Practice and Experience, vol. 23, no. 2, pp. 187–198, 2011. [Online].

Available: https://hal.inria.fr/inria-00550877

[55] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing Locality and Inde-

pendence with Logical Regions,” in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis. IEEE Computer Society

Press, 2012, pp. 66:1–66:11.

[56] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas,

“Ompss: A Proposal for Programming Heterogeneous Multi-core Architectures,” Paral-

lel Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

[57] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra, “DAGuE:

A Generic Distributed DAG Engine for High Performance Computing,” Parallel Comput-

ing, vol. 38, no. 1-2, pp. 37–51, 2012.

[58] G. Marsaglia, “The Marsaglia Random Number CDROM Including the Diehard Battery

of Tests of Randomness,” http://www.stat.fsu.edu/pub/diehard/, 2008.

[59] P. L’Ecuyer and R. Simard, “TestU01: AC Library for Empirical Testing of Random Num-

ber Generators,” ACM Transactions on Mathematical Software (TOMS), vol. 33, no. 4,

p. 22, 2007.

[60] B. Gough, GNU Scientific Library Reference Manual. Network Theory Ltd., 2009.

[61] N. A. Group and N. A. G. L. (Oxford), Fortran Library Manual. Numerical Algorithms

Group, 1988, vol. 3.

https://hal.inria.fr/inria-00550877

126 REFERENCES

[62] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-Dimensionally Equidis-

tributed Uniform Pseudo-Random Number Generator,” ACM Transactions on Modeling

and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[63] M. E. O’Neill, “PCG: A Family of Simple Fast Space-Efficient Statistically Good Algo-

rithms for Random Number Generation,” Harvey Mudd College, Claremont, CA, Tech.

Rep. HMC-CS-2014-0905, 2014.

[64] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal Deviates,”

The Annals of Mathematical Statistics, vol. 29, no. 2, pp. 610–611, 06 1958.

[65] L. Devroye, “Sample-Based Non-Uniform Random Variate Generation,” in Proceedings

of the 18th conference on Winter simulation. ACM, 1986, pp. 260–265.

[66] G. Marsaglia, W. W. Tsang et al., “The Ziggurat Method For Generating Random Vari-

ables,” Journal of Statistical Software, vol. 5, no. 8, pp. 1–7, 2000.

[67] NVidia, “CURAND Library,” 2010.

[68] S. Skiena, The Algorithm Design Manual, 2nd ed. Springer-Verlag London, 2008.

[69] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM journal on comput-

ing, vol. 1, no. 2, pp. 146–160, 1972.

[70] D. G. Corneil, “Lexicographic Breadth First Search - A Survey,” in International Workshop

on Graph-Theoretic Concepts in Computer Science. Springer, 2004, pp. 1–19.

[71] J. Maia, “Porting Heterogeneous Features into HEP-Frame,” Master’s thesis, University

of Minho, Portugal, 2016.

[72] F. Rademakers, “ROOT — A C++ Framework for Petabyte Data Storage, Statistical Anal-

ysis and Visualization,” Computer Physics Communications, vol. 180, no. 12, pp. 2499 –

2512, 2009.

REFERENCES 127

[73] D. R. Hill, C. Mazel, J. Passerat-Palmbach, and M. K. Traore, “Distribution of Random

Streams for Simulation Practitioners,” Concurrency and Computation: Practice and Ex-

perience, vol. 25, no. 10, pp. 1427–1442, 2013.

[74] M. Saito and M. Matsumoto, “A Deviation of CURAND: Standard Pseudorandom Num-

ber Generator in CUDA for GPGPU,” in Proceedings of 10th International Conference on

Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 2012.

[75] T. Bradley, J. du Toit, R. Tong, M. Giles, and P. Woodhams, “Parallelization Techniques

for Random Number Generators,” in GPU Computing Gems Emerald Edition. Elsevier,

2011, pp. 231–246.

[76] K. Claessen and M. H. Pałka, “Splittable Pseudorandom Number Generators Using Cryp-

tographic Hashing,” in ACM SIGPLAN Notices, vol. 48, no. 12. ACM, 2013, pp. 47–58.

[77] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider,”

Journal of Instrumentation, vol. 3, no. 08, p. S08003, 2008.

[78] ——, “Observation of a New Particle in the Search for the Standard Model Higgs Boson

with the ATLAS Detector at the LHC,” Physics Letters B, vol. 716, no. 1, pp. 1 – 29, 2012.

[79] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task Scheduling Algorithms for Heterogeneous

Processors,” in Proceedings of the 8th Heterogeneous Computing Workshop. IEEE, 1999,

pp. 3–14.

[80] J. Reinders, VTune Performance Analyzer Essentials. Intel Press, 2005.

128 REFERENCES

Appendix A

Installing and Creating an Application

With HEP-Frame

This appendix describes the steps required for user to download and install HEP-Frame, as

well as how to create the first pipelined data stream application. The process of compiling

and executing an application is also described in detail.

A.1 Installing HEP-Frame

HEP-Frame requires that the BOOST library, and ROOT framework (at least v5.34.34) for com-

patibility with the high energy physics tools, is installed. Other optional dependencies can be

set only when compiling an application in HEP-Frame, such as the Intel Math Kernel Library

(MKL) and NVidia CUDA toolkit and libraries.

MKL provides several computationally efficient numerical algorithms and functions that

can be useful to code propositions in a pipelined data stream application. HEP-Frame may

internally use MKL to provide the user with efficient Pseudo-Random Number Generators

(PRNGs) if the library is available, which is a compute intensive task in most scientific data

stream applications (see appendix B). NVidia CUDA is also used to improve the computa-

tional efficiency of the HEP-Frame PRNG functions, by offloading this intensive task to GPUs

through the cuRAND library. Use the latest CUDA Toolkit and an adequate CUDA capable

1

2 APPENDIX A. INSTALLING AND CREATING AN APPLICATION WITH HEP-FRAME

GPU.

HEP-Frame can be installed using Clang, Intel, and GNU compilers, with any version that

supports the C++ standard 11. Other compilers may work but were not tested with the frame-

work. The compiler to be used to install HEP-Frame and compile an application is set by

executing export

HEPF_COMPILER=INTEL/CLANG in the bash session before the compilation. GNU compiler is

used by default if HEPF_COMPILER is not explicitly set.

To install HEP-Frame, and all standard and field specific tools in the tools directory (see

subsection 3.2.1 for more details), the user has to execute the install.sh script, inside the

scripts directory, which receives the directory in which BOOST is installed as a parameter.

If no directory is specified, the installation process will assume that BOOST is installed in the

system default library and include directories. A sample execution of the installation script is

./install.sh /home/user/boost/directory/. This links the library core and tools with

BOOST, compile, and install all tools in the tools directory.

The user can update HEP-Frame by executing the update.sh script. This script requires

an internet connection to download the latest version of HEP-Frame, and then backups all

data stream applications, replaces the old HEP-Frame core with the updated version, and

automatically repeats the installation process.

A.2 Creating a Pipelined Data Stream Application With HEP-Frame

The user should execute the newAnalysis.sh script in the scripts folder with the following

arguments to create a new pipelined data stream application:

ApplicationName : the name that the user defines for the application;

/dir/to/the/rootfile.root : if HEP-Frame is compiled with high energy physics tools,

which is used by the class_generator tool to create the specification of the class of

the dataset element and the code required for file I/O.

This creates a folder named ApplicationName in the Analysis directory. The created

A.2. CREATING A PIPELINED DATA STREAM APPLICATION WITH HEP-FRAME 3

folder holds the makefiles specific to the compilation of this application and the automati-

cally generated data structures and code skeletons in the src folder. src contains:

ApplicationName.cxx : the main skeleton file, containing an initialise and finalise

functions, which can be used for the user to code specific setup and finalisation fea-

tures to the application, a sample proposition, and the main function, where proposi-

tions are added to the application and dependencies defined; this file contains a large

amount of comments to guide the user step by step;

ApplicationName.h : the main header file where the user should declare variables and aux-

iliary function global to the application;

ApplicationName_Event.cxx : contains the initialisation and I/O functions that interact

with an input file and build load the data to a dataset element; the user can either write

the code of these functions or it can be automatically created by a tool such as the

class_generator;

ApplicationName_Event.h : contains the specification of the dataset element class, i.e., its

variable names and types;

ApplicationName_cfg.cxx : contains the specification of the variables that must be stored

per proposition; will contain the code required to store them in memory at HEP-Frame

run-time, and the I/O code to write them into .csv or .root files, which is automati-

cally generated when compiling the application.

It is possible to create auxiliary functions to better organise the code, in the Application

Name.cxx or any other file created by the user. The compilation process will take into ac-

count every .cxx and .h files that are created in the src directory. If these functions directly

interact with the event information the unsigned this_event_counter must be passed as

an argument, along with any other arguments that may be required by the user.

A very simple pipelined data stream application in HEP-Frame is available at https://

bitbucket.org/ampereira/sampleapplication.

https://bitbucket.org/ampereira/sampleapplication
https://bitbucket.org/ampereira/sampleapplication

4 APPENDIX A. INSTALLING AND CREATING AN APPLICATION WITH HEP-FRAME

Compiling the code

The compile process of the HEP-Frame library core is separated from the compilation of the

pipelined data stream applications, as shown in figure A.1. The user must execute the make

command on a bash session in the application folder, which compiles the application based

on the instructions automatically generated in the app_Makefile file. The HEP-Frame core

is only compiled the first time a given application is compiled, as it is a very time consuming

task. The HEP-Frame record_parser tool parses the dataset element variables that the user

indicated to store for each proposition, and generates the required code before compiling

the application. This creates .bak backup files of the application files in the src folder for

the user to use as recovery in case something goes wrong.

Figure A.1: The automatic process of compiling a pipelined data stream application in HEP-
Frame.

The interface_generator tool parses the specification of the class of the dataset ele-

ments and creates an defined based interface to abstract the user from interacting with the

HEP-Frame data structure when coding a proposition. For instance, if a proposition updates

the value of the var variable of a dataset element, by var = 2;, the interface will replace

the interaction with this variable by data_structure[this_event_counter].var = 2; at

compile time. This does not change the original user code.

Other tools can be integrated into the compilation process by editing the app_Makefile

file in the application directory, under the "Add your tools here" comment.

Specific functionalities of the framework can be configured by bash environment vari-

A.2. CREATING A PIPELINED DATA STREAM APPLICATION WITH HEP-FRAME 5

ables. The application and HEP-Frame core compilation can be configured by executing the

export VAR=yes command in the bash session before the compilation, where VAR may be:

HEPF_INTEL : uses the Intel compiler suite, which often produces better performing code for

Intel multicore and manycore devices; also enables the usage of the Intel MKL library.

HEPF_MPI : compiles both the application and HEP-Frame core to work in a multiprocess

environment using MPI (see section 3.2.2 for more information).

HEPF_KNC : enables the offload of the MKLKNC PRNG to the Intel Knights Corner manycore

device; this PRNG cannot be used in the API without this option enabled; use in con-

junction with HEP_INTEL for the best computational performance and compatibility.

HEPF_GPU : enables the offload of the CURAND PRNG to a NVidia GPU device; this PRNG

cannot be used in the API without this option enabled;

HEPF_DEBUG : enables the -ggdb3 compiler option to provide extra debugging information.

The following options are designed for advanced users with expertise in parallel comput-

ing:

HEPF_THREAD_BALANCE : enables simultaneous parallel loading and processing of events;

automatically adapts the number of threads assigned for input file loading and pro-

cessing (see subsection 3.2.3 for more information).

HEPF_SCHEDULER : enables the advanced parallel scheduler; it does not allow storing in-

formation of the dataset elements per proposition; incomplete specification of each

proposition dependencies may lead to incorrect results (see subsection 3.2.4 for more

information).

HEPF_AFFINITY : adequately binds each parallel process and/or thread to the available com-

puting cores; may lead to better computational performance, specially for systems with

a non-unified memory architecture.

6 APPENDIX A. INSTALLING AND CREATING AN APPLICATION WITH HEP-FRAME

A.2.1 Pipelined Data Stream Application Execution and Output

The application executable binary is placed inside the bin folder of its directory. The applica-

tion execution can be configured by export commands, similarly to the compilation process,

and by passing arguments to the executable to override any default configuration. export-

based configuration must be set before executing the binary using the export VAR=VALUE

command, where VAR may be:

HEPF_NUM_THREADS : sets the maximum number of simultaneous threads used during the

application execution; by default, this is set to the number of physical cores in the com-

puting system; it is advised to set this to 1 (executing the application sequentially) when

debugging the code.

HEPF_NUM_KNL_THREADS : sets the maximum number of simultaneous threads used during

the application execution in the Intel Knights Landing manycore compute server; this

should only be used in a multiprocess environment, where KNL servers are used in con-

junction with multicore servers, and the user wants to set different amounts of threads

for each device; the number of threads should be set by the HEPF_NUM_THREADS vari-

able when only using KNL servers; by default, this is set to the number of physical cores

in the computing system.

HEPF_NUM_PROCESSERS : sets a fixed number of threads assigned to the dataset process-

ing when used in conjunction with HEPF_THREAD_BALANCE; only advised for advanced

users.

HEPF_NUM_READERS : sets a fixed number of threads assigned to input file reading when used

in conjunction with HEPF_THREAD_BALANCE; only advised for advanced users.

The application can be executed as ./application arguments, where arguments is a

list composed by a pair in the –option value format. These options are:

help : prints the description of the available options.

A.2. CREATING A PIPELINED DATA STREAM APPLICATION WITH HEP-FRAME 7

file : sets the relative or absolute path to the input file to be processed by the application;

the usage of this option is mutually exclusive with directory.

directory : sets the relative or absolute path to a directory with files of the same format to

be processed by the application; HEP-Frame automatically loads and processes every

file in the set directory; the usage of this option is mutually exclusive with file.

record : sets the name of the output file where the event information stored for each propo-

sition is saved.

output : sets the name of the output file and enables saving the dataset elements that pass

all propositions.

An application could be executed by the ./analysis -f ../file.root -r rec_vars

command.

Applications compiled with the HEPF_MPI option for multiprocess environments must be

executed using the mpirun wrapper, where the number of processes must be set by the user.

However, multiprocess execution can only be used when multiple input files are passed to

the application using the directory argument. The number of files should be higher than

the number of processes used.

The total amount of dataset elements processed and the execution time are displayed

when event analyses finish execution. A sample report would be:

6327 elements analysed

Number of elements that passed each proposition:

Prop 1: 6001

Prop 2: 5972

Prop 3: 3144

Prop 4: 2718

Prop 5: 2109

8 APPENDIX A. INSTALLING AND CREATING AN APPLICATION WITH HEP-FRAME

=> The application spent 0.29 secs on input

reading, 24.39 secs on computation and 4.51

secs on element storage

Appendix B

HEP-Frame API

HEP-Frame provides a set of features to aid the development of pipelined data stream appli-

cations, while ensuring that computationally efficient code is produced. The user can access

BOOST functionalities by default, and ROOT if the high energy physics version of HEP-Frame

was downloaded, as these libraries are automatically linked with the user code.

B.1 Pseudo-Random Number Generation

A common requirement of scientific data analyses, a subset of pipelined data stream appli-

cations, is the need for very large amounts of Pseudo Random Numbers (PRNs). The use of

computationally inefficient PRN Generators (PRNGs) may cause significant impact on the

computational performance of the applications. HEP-Frame offers several PRNGs with ei-

ther uniform or Gaussian distribution, whose implementations and run-time execution and

management are transparent to the user:

TRandom : uses the Mersenne Twister implementation available on the ROOT library, which

generates a single PRN.

PCG : uses the set of PRNG available in the PCG family of PRNGs. It provides single value

and array generation, as implemented in the PCG library.

MKL : uses the Mersenne Twister implementation available at MKL to generate a single

9

10 APPENDIX B. HEP-FRAME API

value. If a Gaussian distribution is required this implementation uses the Box-Muller

algorithm. MKL transparently provides multiple PRN streams to be used in a parallel

multithreaded environment.

MKLA1 : uses the Mersenne Twister implementation available at MKL to generate an array

of PRNs. HEP-Frame internally manages a dual-buffer for PRNs, where one buffer is si-

multaneously consumed, PRN by PRN, by multiple processing threads, while the other

buffer is being filled. If a Gaussian distribution is required this implementation uses

the Box-Muller algorithm.

MKLA2 : similar to MKLA1, but each consuming thread has allocated a private subset of the

PRN buffer.

MKLA3 : uses the same algorithms as MKLA1 but implements a single PRN lockfree queue,

where the producer pushes batches of PRNs when the amount of PRNs in the queue is

lower than a given threshold, and the consumers simultaneously pop PRNs whenever

necessary.

CURAND : uses the Mersenne Twister algorithm available in the cuRAND CUDA library, cou-

pled with the Box-Muller algorithm for Gaussian distributions. It uses a similar dual-

buffer approach, where a buffer of PRNs is filled in the GPU while the consumer threads

use the buffer on the CPU memory. The user needs to execute the command export

HEPF_GPU=yes on the bash session before compiling the application to use this specific

generator.

MKLKNC : uses the same approach as in GPU, resorting to the MKL implementation of the

PRNG, but it is oriented to the Intel co-processor Xeon Phi KNC.

The PRNG is selected by changing GENERATOR to the correct PRNG identifier (as in the

list above) in the rnd.setGenerator(GENERATOR) instruction, in the main function of the

application skeleton file. Each provided generator is best suited for specific PRN intensive

applications, so it is advisable to test which PRNG performs better for each individual data

stream application on a small set of input data.

B.2. EVENT LOADING AND OUTPUT STORAGE 11

The user calls the PRNG by simply typing rnd.uniform() or rnd.gauss(), which will re-

turn an uniformly distributed double between 0 and 1 or a double in an user defined Gaus-

sian distribution.

HEP-Frame provides the declaration and initialisation code of a PRNG as the rnd variable

in the user application skeleton files. However, the user can declare more PRNGs by declaring

and initialising it in the application, similarly to rnd. This may be useful if the user wants

to generate PRNs following two different Gaussian distributions, where a PRNG should be

declared for each individual distribution.

B.2 Event Loading and Output Storage

The event information is completely managed by the user, which may be stored in any file

type. The user must supply the code required to read the information form the file into the

HEP-Frame data structure. The class_generator tool is capable of creating the class specifi-

cation of the data structure and the code to load the input files for the .root format common

in high energy physics.

HEP-Frame is capable of analysing and loading any input .root file, or a batch of files,

without any user interaction. When creating an analysis, the user needs to provide a sample

.root file with a set of events which will be processed. HEP-Frame automatically analyses

the structure of this file to create the required code to read the file, or batch of files, and build

a data structure (available to the user) to simultaneously hold in memory the information of

all events in the file, when an application is executed.

It is often required in data stream applications that dataset elements that pass all cuts

are stored in output files. The code to perform this output must either be provided by the

user or automatically generated by class_generator for .root files. When executing an

application the user may specify the –output option, detailed in appendix A, and the dataset

elements are automatically stored by HEP-Frame.

HEP-Frame allows the user to easily store specific dataset element information per propo-

sition. For an application named AnalysisName, the name of the dataset element variables

12 APPENDIX B. HEP-FRAME API

has to be inserted in the AnalysisName_cfg.cxx file, after the #ifdef RecordVariables

statement, in the src folder of the application directory. The record_parser tool generates

the required code to store these variables at compile time, for the dataset elements that pass

each individual proposition, in an output .csv or .root file. It is also possible to store vari-

ables that were added to the data structure class but are not included in the input file.

Consider a dataset element containing int var, float arr[5], Class cl, and vector

<double> vec variables. They can be automatically stored by writing the following code:

var : stores the values of this variable.

arr : stores the value of every position of this array.

arr[0] : stores the value of the position with index 0 of this array; if the index is out of

bounds of the array of a given dataset element no value will be stored.

cl.getValue() : stores the result of the getValue() method; these methods must not re-

quire any input parameters.

vec[1] : stores the value of the position with index 1 of this vector; it is necessary to always

specify an index when storing vectors; if the index is out of bounds of the array of a

given event no value will be stored.

It is also possible to store the result of simple equations based on the dataset element

variables. The supported type of expressions are:

var + var : stores the result of this expression as an int.

var + arr[2] - arr[1] : stores the result of this expression as a float to avoid losing the

fractional part of the result, as arr type is float.

vec[0] / cl.getValue() : stores the result of this expression as a double to avoid losing

precision in the result, as vec type is double.

The +,°,§,/, and % operands are supported. The user must ensure that every index of the

arrays and vectors used in these expressions are available, otherwise the application may not

store the information properly. The variables in each expression are also individually stored.

B.3. INTERACTION WITH EXTERNAL LIBRARIES 13

B.3 Interaction with External Libraries

HEP-Frame depends on the BOOST library, which is automatically linked to each application

code. The user can access these library features without manually configuring the compila-

tion process.

Intel Math Kernel Library provides math routines useful for scientific computing specifi-

cally optimised for multicore and manycore Intel devices. It includes BLAS, LAPACK, ScaLA-

PACK, sparse solvers, FFTs, and vector math functions widely used in many scientific com-

puting frameworks. Users can use MKL functions in their application code, if it is already

installed on the system, by including the necessary headers in the application .h header files.

The user should to execute the export HEPF_MKL=yes command in the bash session before

compiling the application so that HEP-Frame automatically links with MKL.

Advanced users can use any external C++ library with HEP-Frame. They should include

the necessary headers in the application code and edit the app_Makefile in the application

folder to append both the compiler library linking and library directory flags to the LIBS and

INCLUDE variables.

	Página 1
	Página 2
	Página 3
	Página 4
	Thesis_HEP_Frame.pdf
	Introduction
	Motivation
	Contributions
	Document Structure

	Parallel Computing Environments
	Homogeneous Servers
	Multicore Devices
	Manycore Devices

	Heterogeneous Servers
	Graphics Processing Units
	Manycore Coprocessors
	Other Hardware Accelerators

	Pipelined Data Streaming
	Computational Characterisation
	Compute Intensive Tasks
	Parallelisation Approaches

	Software for Efficient Parallel Execution
	Libraries and Schedulers for Efficient Parallel Computing
	Frameworks for Efficient Parallel Computing

	Random Number Generation
	Popular PRNG Algorithms
	Transforming Uniformly Distributed PRNs
	PRNG Libraries

	Summary

	HEP-Frame: a Highly Efficient Pipelined Framework
	HEP-Frame Structure and Usability
	Initial User Interaction
	Tools to Automate the Application Development

	HEP-Frame Multi-layer Scheduler
	Structure of the Scheduler Layers
	Multiprocess Scheduling
	Dynamic Tuning of Data Setup and Processing
	Pipeline Ordering and Parallel Execution

	Using Accelerator Devices
	Offloading Propositions into the KNC Coprocessor
	Offloading PRNGs to Multicore, Manycore and Accelerator Devices
	Pipeline Reordering and Parallelisation in the KNL Server

	Summary

	HEP-Frame Performance Evaluation
	Case Studies: Scientific Data Analyses
	The Analysis Code
	Simple Parallelisation
	Porting Analyses into HEP-Frame and StarPU
	Key Characteristics of the Analyses

	Testbed and Methodology
	Results and Discussion
	Dynamic Tuning of DS and DP Threads
	Multithreading with and Without HEP-Frame
	Multiprocess on Multi-Socket Servers
	Proposition Offload to Knights Corner Accelerators
	Efficient Generation of PRN Batches
	HEP-Frame in a Manycore KNL Server
	HEP-Frame vs. StarPU
	Overall Performance vs. the Original Case Studies

	Summary

	Conclusions and Future Work
	Future Work

	References
	Installing and Creating an Application With HEP-Frame
	Installing HEP-Frame
	Creating a Pipelined Data Stream Application With HEP-Frame
	Pipelined Data Stream Application Execution and Output

	HEP-Frame API
	Pseudo-Random Number Generation
	Event Loading and Output Storage
	Interaction with External Libraries

	Página em branco
	Página em branco

