
PAPI - PERFORMANCE API

ANDRÉ PEREIRA 
ampereira@di.uminho.pt

1



André Pereira, UMinho, 2018/2019

Motivation

2



André Pereira, UMinho, 2018/2019

Motivation
Application and functions execution time is easy 
to measure


time

gprof

valgrind (callgrind)

…

2



André Pereira, UMinho, 2018/2019

Motivation
Application and functions execution time is easy 
to measure


time

gprof

valgrind (callgrind)

…

It is enough to identify bottlenecks, but…

Why is is it slow?

How does the code behaves?

2



André Pereira, UMinho, 2018/2019

Motivation

3



André Pereira, UMinho, 2018/2019

Motivation

Efficient algorithms should take into account

3



André Pereira, UMinho, 2018/2019

Motivation

Efficient algorithms should take into account
Cache behaviour

3



André Pereira, UMinho, 2018/2019

Motivation

Efficient algorithms should take into account
Cache behaviour
Memory and resource contention

3



André Pereira, UMinho, 2018/2019

Motivation

Efficient algorithms should take into account
Cache behaviour
Memory and resource contention
Floating point efficiency

3



André Pereira, UMinho, 2018/2019

Motivation

Efficient algorithms should take into account
Cache behaviour
Memory and resource contention
Floating point efficiency
Branch behaviour

3



André Pereira, UMinho, 2018/2019

HW Performance Counters

4



André Pereira, UMinho, 2018/2019

HW Performance Counters
Hardware designers added specialised registers o 
measure various aspects of a microprocessor

4



André Pereira, UMinho, 2018/2019

HW Performance Counters
Hardware designers added specialised registers o 
measure various aspects of a microprocessor

Generally, they provide an insight into

Timings

Cache and branch behaviour

Memory access patterns

Pipeline behaviour

FP performance

IPC

…

4



André Pereira, UMinho, 2018/2019

What is PAPI?

5



André Pereira, UMinho, 2018/2019

What is PAPI?

Interface to interact with performance counters

With minimal overhead

Portable across several platforms

5



André Pereira, UMinho, 2018/2019

What is PAPI?

Interface to interact with performance counters

With minimal overhead

Portable across several platforms

Provides utility tools, C, and Fortran API

Platform and counters information

5



André Pereira, UMinho, 2018/2019

PAPI Organisation

3rd Party Tools

Perf Counter Hardware
Operating System

Kernel Extension

PAPI Hardware Specific

Layer

PAPI Portable Layer

Low Level

API

High Level

API

6



André Pereira, UMinho, 2018/2019

Supported Platforms

Mainstream platforms (Linux)

x86, x86_64 Intel and AMD

ARM, MIPS

Intel Itanium II

IBM PowerPC

7



André Pereira, UMinho, 2017/2018

Utilities

8



André Pereira, UMinho, 2017/2018

Utilities

papi_avail

8



André Pereira, UMinho, 2017/2018

Utilities

papi_avail

papi_native_avail

8



André Pereira, UMinho, 2017/2018

Utilities

papi_avail

papi_native_avail

papi_event_chooser

8



André Pereira, UMinho, 2018/2019

PAPI Performance Counters

9



André Pereira, UMinho, 2018/2019

PAPI Performance Counters
Preset events


Events implemented on all platforms

PAPI_TOT_INS

9



André Pereira, UMinho, 2018/2019

PAPI Performance Counters
Preset events


Events implemented on all platforms

PAPI_TOT_INS

Native events

Platform dependent events


L3_CACHE_MISS

9



André Pereira, UMinho, 2018/2019

PAPI Performance Counters
Preset events


Events implemented on all platforms

PAPI_TOT_INS

Native events

Platform dependent events


L3_CACHE_MISS

Derived events

Preset events that are derived from multiple native events


PAPI_L1_TCM may be L1 data misses + L1 instruction misses

9



André Pereira, UMinho, 2018/2019

PAPI High-level Interface

10



André Pereira, UMinho, 2018/2019

PAPI High-level Interface

Calls the low-level API

10



André Pereira, UMinho, 2018/2019

PAPI High-level Interface

Calls the low-level API

Easier to use

10



André Pereira, UMinho, 2018/2019

PAPI High-level Interface

Calls the low-level API

Easier to use

Enough for coarse grain measurements

You will not optimise code based on the amount of L2 
TLB flushes per thread…

10



André Pereira, UMinho, 2018/2019

PAPI High-level Interface

Calls the low-level API

Easier to use

Enough for coarse grain measurements

You will not optimise code based on the amount of L2 
TLB flushes per thread…

For preset events only!

10



André Pereira, UMinho, 2018/2019

The Basics

PAPI_start_counters


PAPI_stop_counters

11



André Pereira, UMinho, 2018/2019

The Basics

#include "papi.h”
#define NUM_EVENTS 2
long long values[NUM_EVENTS];
unsigned int Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC};
 /* Start the counters */
 PAPI_start_counters((int*)Events,NUM_EVENTS);
 /* What we are monitoring… */
 do_work();
 /* Stop counters and store results in values */
 retval = PAPI_stop_counters(values,NUM_EVENTS);

12



André Pereira, UMinho, 2018/2019

PAPI Low-level Interface

13



André Pereira, UMinho, 2018/2019

PAPI Low-level Interface

Increased efficiency and functionality

13



André Pereira, UMinho, 2018/2019

PAPI Low-level Interface

Increased efficiency and functionality

More information about the environment

13



André Pereira, UMinho, 2018/2019

PAPI Low-level Interface

Increased efficiency and functionality

More information about the environment

Concepts to check later

EventSet

Multiplexing

13



André Pereira, UMinho, 2018/2019

The Basics

Initialised

Measurement 
Storage

EventSet 
Setup

Measuring

Counter 
Setup

library_init

create_eventset

create_eventset

add_event

add_event

start

start

stop

PREFIX: PAPI_

14



André Pereira, UMinho, 2018/2019

The Basics
#include "papi.h”

#define NUM_EVENTS 2

int Events[NUM_EVENTS]={PAPI_FP_INS,PAPI_TOT_CYC};

int EventSet;

long long values[NUM_EVENTS];

/* Initialize the Library */

retval = PAPI_library_init(PAPI_VER_CURRENT);

/* Allocate space for the new eventset and do setup */

retval = PAPI_create_eventset(&EventSet);

/* Add Flops and total cycles to the eventset */

retval = PAPI_add_events(EventSet,Events,NUM_EVENTS);

/* Start the counters */

retval = PAPI_start(EventSet);

/* What we want to monitor*/

do_work();

/*Stop counters and store results in values */

retval = PAPI_stop(EventSet,values);

15



André Pereira, UMinho, 2018/2019

PAPI CUDA Component

16



André Pereira, UMinho, 2018/2019

PAPI CUDA Component
PAPI is also available for CUDA GPUs

16



André Pereira, UMinho, 2018/2019

PAPI CUDA Component
PAPI is also available for CUDA GPUs

Uses the CUPTI

Which counters can be directly accessed

Define a file with the counters and an environment variable

16



André Pereira, UMinho, 2018/2019

PAPI CUDA Component
PAPI is also available for CUDA GPUs

Uses the CUPTI

Which counters can be directly accessed

Define a file with the counters and an environment variable

Gives useful information about the GPU usage

IPC

Memory load/stores/throughput 

Branch divergences

SM(X) occupancy

…

16



André Pereira, UMinho, 2018/2019

What to Measure?

17



André Pereira, UMinho, 2018/2019

What to Measure?

The whole application?

17



André Pereira, UMinho, 2018/2019

What to Measure?

The whole application?

PAPI usefulness is limited when used alone

17



André Pereira, UMinho, 2018/2019

What to Measure?

The whole application?

PAPI usefulness is limited when used alone
Combine it with other profilers

17



André Pereira, UMinho, 2018/2019

What to Measure?

The whole application?

PAPI usefulness is limited when used alone
Combine it with other profilers
Bottleneck identification + characterisation

17



André Pereira, UMinho, 2018/2019

A Practical Example

for (int i = 0; i < SIZE; i++)

	 for (int j = 0; j < SIZE; j++)

	 	 for (int k = 0; k < SIZE; k++)

	 	 	 c[i][j] += a[i][k] * b[k][j];

18



André Pereira, UMinho, 2018/2019

A Practical Example
int sum;


for (int i = 0; i < SIZE; i++)

	 for (int j = 0; j < SIZE; j++) {


sum = 0;

	 	 for (int k = 0; k < SIZE; k++)

	 	 	 sum += a[i][k] * b[k][j];


c[i][j] = sum;

}

19



André Pereira, UMinho, 2018/2019

A Practical Example
int sum;


for (int i = 0; i < SIZE; i++)

	 for (int j = 0; j < SIZE; j++) {


sum = 0;

	 	 for (int k = 0; k < SIZE; k++)

	 	 	 sum += a[i][k] * b[k][j];


c[i][j] = sum;

}

19

SGEMM



André Pereira, UMinho, 2017/2018

Execution Time

20

@ 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz



André Pereira, UMinho, 2017/2018

FLOP’s

21

@ 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz



André Pereira, UMinho, 2017/2018

Cache Miss Rate

22

@ 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz



André Pereira, UMinho, 2017/2018

Arithmetic Intensity

23

@ 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz



André Pereira, UMinho, 2018/2019

Useful Counters

24



André Pereira, UMinho, 2018/2019

Useful Counters
Instruction mix


PAPI_FP_INS

PAPI_SR/LD_INS

PAPI_BR_INS

PAPI_SP/DP_VEC

24



André Pereira, UMinho, 2018/2019

Useful Counters
Instruction mix


PAPI_FP_INS

PAPI_SR/LD_INS

PAPI_BR_INS

PAPI_SP/DP_VEC

FLOPS and operational intensity

PAPI_FP_OPS

PAPI_SP/DP_OPS

PAPI_TOT_INS

24



André Pereira, UMinho, 2018/2019

Useful Counters
Instruction mix


PAPI_FP_INS

PAPI_SR/LD_INS

PAPI_BR_INS

PAPI_SP/DP_VEC

FLOPS and operational intensity

PAPI_FP_OPS

PAPI_SP/DP_OPS

PAPI_TOT_INS

Cache behaviour and bytes transferred

PAPI_L1/2/3_TCM

PAPI_L1_TCA

24



André Pereira, UMinho, 2018/2019

Useful Hints

25



André Pereira, UMinho, 2018/2019

Useful Hints
Be careful choosing a measurement heuristic


Q: Why? Average? Median? Best measurement?

25



André Pereira, UMinho, 2018/2019

Useful Hints
Be careful choosing a measurement heuristic


Q: Why? Average? Median? Best measurement?

Automatise the measurement process

With scripting/C++ coding

Using 3rd party tools that resort to PAPI


PerfSuite

HPCToolkit

TAU

VTune

25



André Pereira, UMinho, 2018/2019

Useful Hints
Be careful choosing a measurement heuristic


Q: Why? Average? Median? Best measurement?

Automatise the measurement process

With scripting/C++ coding

Using 3rd party tools that resort to PAPI


PerfSuite

HPCToolkit

TAU

VTune

Available for Java and on virtual machines

25



André Pereira, UMinho, 2018/2019

Compiling and Running the 
Code

26



André Pereira, UMinho, 2018/2019

Compiling and Running the 
Code

Use the same GCC/G++ version as

The PAPI compilation on your home

The PAPI available at the cluster

26



André Pereira, UMinho, 2018/2019

Compiling and Running the 
Code

Use the same GCC/G++ version as

The PAPI compilation on your home

The PAPI available at the cluster

Setup the environment

module load gcc/5.3.0

module load papi/5.4.1

Add -I/share/apps/papi/5.4.1/include and -L/share/apps/papi/
5.4.1/lib to the compilation if PAPI is not recognised

26



André Pereira, UMinho, 2018/2019

Compiling and Running the 
Code

Use the same GCC/G++ version as

The PAPI compilation on your home

The PAPI available at the cluster

Setup the environment

module load gcc/5.3.0

module load papi/5.4.1

Add -I/share/apps/papi/5.4.1/include and -L/share/apps/papi/
5.4.1/lib to the compilation if PAPI is not recognised

Code compilation

g++ -O3 c.cpp -lpapi

26



André Pereira, UMinho, 2018/2019

Hands-on

Assess the available counters on a node 
(interactive qsub)


qsub -I -qmei -lnodes=1,walltime=10:00


Perform the FLOPs and miss rate measurements 
interactively


https://bitbucket.org/ampereira/papi/downloads

27

https://bitbucket.org/ampereira/papi/downloads


André Pereira, UMinho, 2018/2019

References
Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D. "Using PAPI for 
Hardware Performance Monitoring on Linux Systems," Conference on Linux 
Clusters: The HPC Revolution, Linux Clusters Institute, Urbana, Illinois, June 25-27, 
2001.


Weaver, V., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D., 
Moore, S. "Measuring Energy and Power with PAPI,” International Workshop on 
Power-Aware Systems and Architectures, Pittsburgh, PA, September 10, 2012.


Malony, A., Biersdorff, S., Shende, S., Jagode, H., Tomov, S., Juckeland, G., 
Dietrich, R., Duncan Poole, P., Lamb, C. "Parallel Performance Measurement of 
Heterogeneous Parallel Systems with GPUs," International Conference on Parallel 
Processing (ICPP'11), Taipei, Taiwan, September 13-16, 2011.


Weaver, V., Dongarra, J. "Can Hardware Performance Counters Produce 
Expected, Deterministic Results?," 3rd Workshop on Functionality of Hardware 
Performance Monitoring, Atlanta, GA, December 4, 2010.

28


