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Motivation
Application and functions execution time is easy 
to measure


time

gprof

valgrind (callgrind)

…
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Motivation
Application and functions execution time is easy 
to measure


time

gprof

valgrind (callgrind)

…

It is enough to identify bottlenecks, but…

Why is is it slow?

How does the code behaves?
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Motivation

Efficient algorithms should take into account
Cache behaviour
Memory and resource contention
Floating point efficiency
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Motivation

Efficient algorithms should take into account
Cache behaviour
Memory and resource contention
Floating point efficiency
Branch behaviour
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HW Performance Counters
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HW Performance Counters
Hardware designers added specialised registers o 
measure various aspects of a microprocessor
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HW Performance Counters
Hardware designers added specialised registers o 
measure various aspects of a microprocessor

Generally, they provide an insight into

Timings

Cache and branch behaviour

Memory access patterns

Pipeline behaviour

FP performance

IPC

…
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What is PAPI?
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What is PAPI?

Interface to interact with performance counters

With minimal overhead

Portable across several platforms
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What is PAPI?

Interface to interact with performance counters

With minimal overhead

Portable across several platforms

Provides utility tools, C, and Fortran API

Platform and counters information
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PAPI Organisation

3rd Party Tools

Perf Counter Hardware
Operating System

Kernel Extension

PAPI Hardware Specific

Layer

PAPI Portable Layer

Low Level

API

High Level

API
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Supported Platforms

Mainstream platforms (Linux)

x86, x86_64 Intel and AMD

ARM, MIPS

Intel Itanium II

IBM PowerPC
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Utilities
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Utilities

papi_avail
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Utilities

papi_avail

papi_native_avail
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Utilities

papi_avail

papi_native_avail

papi_event_chooser
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PAPI Performance Counters
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PAPI Performance Counters
Preset events


Events implemented on all platforms

PAPI_TOT_INS
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PAPI Performance Counters
Preset events


Events implemented on all platforms

PAPI_TOT_INS

Native events

Platform dependent events


L3_CACHE_MISS
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PAPI Performance Counters
Preset events


Events implemented on all platforms

PAPI_TOT_INS

Native events

Platform dependent events


L3_CACHE_MISS

Derived events

Preset events that are derived from multiple native events


PAPI_L1_TCM may be L1 data misses + L1 instruction misses
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PAPI High-level Interface
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Calls the low-level API

Easier to use
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PAPI High-level Interface

Calls the low-level API

Easier to use

Enough for coarse grain measurements

You will not optimise code based on the amount of L2 
TLB flushes per thread…
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PAPI High-level Interface

Calls the low-level API

Easier to use

Enough for coarse grain measurements

You will not optimise code based on the amount of L2 
TLB flushes per thread…

For preset events only!
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The Basics

PAPI_start_counters


PAPI_stop_counters
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The Basics

#include "papi.h”
#define NUM_EVENTS 2
long long values[NUM_EVENTS];
unsigned int Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC};
 /* Start the counters */
 PAPI_start_counters((int*)Events,NUM_EVENTS);
 /* What we are monitoring… */
 do_work();
 /* Stop counters and store results in values */
 retval = PAPI_stop_counters(values,NUM_EVENTS);
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PAPI Low-level Interface
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PAPI Low-level Interface

Increased efficiency and functionality
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PAPI Low-level Interface

Increased efficiency and functionality

More information about the environment
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PAPI Low-level Interface

Increased efficiency and functionality

More information about the environment

Concepts to check later

EventSet

Multiplexing
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The Basics

Initialised

Measurement 
Storage

EventSet 
Setup

Measuring

Counter 
Setup

library_init

create_eventset

create_eventset

add_event

add_event

start

start

stop

PREFIX: PAPI_
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The Basics
#include "papi.h”

#define NUM_EVENTS 2

int Events[NUM_EVENTS]={PAPI_FP_INS,PAPI_TOT_CYC};

int EventSet;

long long values[NUM_EVENTS];

/* Initialize the Library */

retval = PAPI_library_init(PAPI_VER_CURRENT);

/* Allocate space for the new eventset and do setup */

retval = PAPI_create_eventset(&EventSet);

/* Add Flops and total cycles to the eventset */

retval = PAPI_add_events(EventSet,Events,NUM_EVENTS);

/* Start the counters */

retval = PAPI_start(EventSet);

/* What we want to monitor*/

do_work();

/*Stop counters and store results in values */

retval = PAPI_stop(EventSet,values);
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PAPI CUDA Component
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PAPI CUDA Component
PAPI is also available for CUDA GPUs
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PAPI CUDA Component
PAPI is also available for CUDA GPUs

Uses the CUPTI

Which counters can be directly accessed

Define a file with the counters and an environment variable
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PAPI CUDA Component
PAPI is also available for CUDA GPUs

Uses the CUPTI

Which counters can be directly accessed

Define a file with the counters and an environment variable

Gives useful information about the GPU usage

IPC

Memory load/stores/throughput 

Branch divergences

SM(X) occupancy

…
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What to Measure?
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What to Measure?

The whole application?

17



André Pereira, UMinho, 2018/2019

What to Measure?

The whole application?

PAPI usefulness is limited when used alone

17



André Pereira, UMinho, 2018/2019

What to Measure?

The whole application?

PAPI usefulness is limited when used alone
Combine it with other profilers
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What to Measure?

The whole application?

PAPI usefulness is limited when used alone
Combine it with other profilers
Bottleneck identification + characterisation

17



André Pereira, UMinho, 2018/2019

A Practical Example

for (int i = 0; i < SIZE; i++)

	 for (int j = 0; j < SIZE; j++)

	 	 for (int k = 0; k < SIZE; k++)

	 	 	 c[i][j] += a[i][k] * b[k][j];
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A Practical Example
int sum;


for (int i = 0; i < SIZE; i++)

	 for (int j = 0; j < SIZE; j++) {


sum = 0;

	 	 for (int k = 0; k < SIZE; k++)

	 	 	 sum += a[i][k] * b[k][j];


c[i][j] = sum;

}
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A Practical Example
int sum;


for (int i = 0; i < SIZE; i++)

	 for (int j = 0; j < SIZE; j++) {


sum = 0;

	 	 for (int k = 0; k < SIZE; k++)

	 	 	 sum += a[i][k] * b[k][j];


c[i][j] = sum;

}
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Execution Time

20

@ 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz
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FLOP’s
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@ 2x Intel Xeon E5-2695v2, 12C with 24t each, 2.4GHz
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Cache Miss Rate
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Arithmetic Intensity
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Useful Counters
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Useful Counters
Instruction mix


PAPI_FP_INS

PAPI_SR/LD_INS

PAPI_BR_INS

PAPI_SP/DP_VEC
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Useful Counters
Instruction mix


PAPI_FP_INS

PAPI_SR/LD_INS

PAPI_BR_INS

PAPI_SP/DP_VEC

FLOPS and operational intensity

PAPI_FP_OPS

PAPI_SP/DP_OPS

PAPI_TOT_INS
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Useful Counters
Instruction mix


PAPI_FP_INS

PAPI_SR/LD_INS

PAPI_BR_INS

PAPI_SP/DP_VEC

FLOPS and operational intensity

PAPI_FP_OPS

PAPI_SP/DP_OPS

PAPI_TOT_INS

Cache behaviour and bytes transferred

PAPI_L1/2/3_TCM

PAPI_L1_TCA
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Useful Hints
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Useful Hints
Be careful choosing a measurement heuristic


Q: Why? Average? Median? Best measurement?
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Useful Hints
Be careful choosing a measurement heuristic


Q: Why? Average? Median? Best measurement?

Automatise the measurement process

With scripting/C++ coding

Using 3rd party tools that resort to PAPI


PerfSuite

HPCToolkit

TAU

VTune
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Useful Hints
Be careful choosing a measurement heuristic


Q: Why? Average? Median? Best measurement?

Automatise the measurement process

With scripting/C++ coding

Using 3rd party tools that resort to PAPI


PerfSuite

HPCToolkit

TAU

VTune

Available for Java and on virtual machines
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Compiling and Running the 
Code
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Compiling and Running the 
Code

Use the same GCC/G++ version as

The PAPI compilation on your home

The PAPI available at the cluster

26



André Pereira, UMinho, 2018/2019

Compiling and Running the 
Code

Use the same GCC/G++ version as

The PAPI compilation on your home

The PAPI available at the cluster

Setup the environment

module load gcc/5.3.0

module load papi/5.4.1

Add -I/share/apps/papi/5.4.1/include and -L/share/apps/papi/
5.4.1/lib to the compilation if PAPI is not recognised
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Compiling and Running the 
Code

Use the same GCC/G++ version as

The PAPI compilation on your home

The PAPI available at the cluster

Setup the environment

module load gcc/5.3.0

module load papi/5.4.1

Add -I/share/apps/papi/5.4.1/include and -L/share/apps/papi/
5.4.1/lib to the compilation if PAPI is not recognised

Code compilation

g++ -O3 c.cpp -lpapi
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Hands-on

Assess the available counters on a node 
(interactive qsub)


qsub -I -qmei -lnodes=1,walltime=10:00


Perform the FLOPs and miss rate measurements 
interactively


https://bitbucket.org/ampereira/papi/downloads
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