¢

» %

- 3%
-
et
Qadluginglrgle i

LIIIIIIIIIIIIIIII.
AN IIIIIIIIIIID .\

NVIDIA.

PERSONAL

o
383
=
2
o
=
O
Q
o
L
o
=
(7))

HIGH PERFORMANCE COMPUTING WITH CUDA

2018/2019

@di.uminho.pt

ampereira

CONTACT

LEcURER. ANDRE PEREIRA

COMPUTATIONAL FLUID DYNAMICS

Viotivation

MEDICAL IMAGING
SEISMIC EXPLORATION

‘ -
~ .
N\ .

N

' ‘
\~ X

COMPUTATIONAL FINANCE

—

Motivation

NVIDIA® TESLA® K80 ACCELERATOR PERFORMANCE
[NVIDIA Tesla K80 NVIDIA Tesla K40 [mmm CPU
2% — =
20
RS |
2
£
£ 1 — | I ‘ i | .
X-times 0 J | I . Jul u} Jul I Jal m
' asagﬂga“ﬁiw
3 = § W @ O Ew 4 ZE @ 4 = g P 3
e 3 = o <5 5 w8 T z
S < £ CH = B 3 =
= 95 d
X
COMPUTATIONAL CHEMISTRY MATERIALS PHYSICS SEISMIC BENCH- MACHINE
AND MOLECULAR DYNAMICS SCIENCE PROCESSING MARK LEARNING

Pitfalls

Pitfalls

* (General misconception
Scientist: “MORE POWERRRR”
NVidia: “Hey, here’s the new 2000€ Tesla”

Pitfalls

* (General misconception
Scientist: “MORE POWERRRR”
NVidia: “Hey, here’s the new 2000€ Tesla”

* However, scientists may run into two problems

* [he code Is not faster
* The code is not correct

Concepts

* Heterogeneous Computing
* Blocks
* Threads

* |[ndexing
* Shared Memory

* _ syncthreads()

* Asynchronous Operation

* Handling Errors

* Efficiently Managing Memory/Dynamic Parallelism
* Unified Memory

* Profiling

Kepler K20

* SP/DP peak performance: 3.52/1.17 TFLOPS

* 5GB GDDR RAM @208 Gbytes/sec
* 064K 32-bit registers (max 255 per thread)
* 64KB L1/shared memory and 48KB read only cache
* 1536 KB shared L2 cache

Heterogeneous Computing

* Host: CPU and its memory (host memory)

* Device: GPU and its memory (device memory)

Heterogeneous Computing

* A very simple execution flow

PCIl Bus

Heterogeneous Computing

* A very simple execution flow

* Copy input data from CPU to
PCIl Bus GPU memory

Heterogeneous Computing

* A very simple execution flow

* Copy input data from CPU to
PCI Bus » GPU memory

* |Load GPU code and execute it

Heterogeneous Computing

* A very simple execution flow

* Copy input data from CPU to
PCIl Bus GPU memory

* |Load GPU code and execute it

* Copy the results from GPU to
the CPU memory

EX.: Addition on the Device

3 __global___ void mykernel (void) {

|
|
1)
]
|
|

int main (void) {
mykernel <<< 1, 1 >>> ();
return O;

|
|
|
|
|

EX.: Addition on the Device

* New keywords
* _ global__ runs on the device and is called from the host
* host runs on the host
* _ device__ runs on the device (inlined inside a __global__ kernel)

__global___ void mykernel (void) {

‘|
| }
|

int main (void) {
| mykernel <<< 1, 1 >>> ();
return O;

|
a
N
y }
|
;
|

EX.: Addition on the Device

* New keywords
* _ global__ runs on the device and is called from the host
* host_ runs on the host
* _ device__ runs on the device (inlined inside a __global__ kernel)

* Kernel launch
* Number of threads (to see later)

* |nput parameters __global___ void mykernel (void) {

int main (void) {
\ mykernel <<< 1, 1 >>> ();
return O;

EX.: Addition on the Device

* New keywords
* _ global__ runs on the device and is called from the host
* host runs on the host
* _ device__ runs on the device (inlined inside a __global__ kernel)

* Kernel launch
* Number of threads (to see later)
* |nput parameters __global___ void mykernel (void) {
* Compile everything with nvcc } '
* nvce compiles the device code int main (void) {

« miccallsgeciicofortherest | | Dyselidises 1 100 ()
return O;

Extending the Kernel

. __global__ void mykernel (int *a, int *b, int *c) { |
| ‘e="a+ b

' int main (void) {
| mykernel <<< 1, 1 >>> ();
return O;

g
|
i
|
|
H

10

Extending the Kernel

* |t now adds two integers
* (Copy the data into / out of, the device

* Device and host pointers address different memory spaces (as of
CUDA 6.0)

__global__ void mykernel (int *a, int *b, int *c) {
*c=’a+'h
|

int main (void) {
| mykernel <<< 1, 1 >>> ();
return O;

|}
10

§ 3

Extending the Kernel

* |t now adds two integers
* (Copy the data into / out of, the device

* Device and host pointers address different memory spaces (as of
CUDA 6.0)

* \We must transfer the datal

* cudaMalloc
* cudaFree
cudaMemcpy
s py __global__ void mykernel (int *a, int *b, int *c) { |
c=a+ Db; |

)

int main (void) {
mykernel <<< 1, 1 >>> ();
return O;

|}
| 10

Adapting main()

int main (void) {
int a, b, c;
int *dev_a, *dev_b, *dev_c;

cudaMalloc(void **)&dev_a, sizeof(int));
cudaMalloc(void **)&dev_Db, sizeof(int));
cudaMalloc(void **)&dev_c, sizeof(int));

2
4;

a
b
cudaMemcpy(dev_a, &a, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, &b, sizeof(int), cudaMemcpyHostToDevice);
mykernel <<< 1, 1 >>> (dev_a, dev_b, dev_c);
cudaThreadSynchronize();

cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDevice ToHost);

cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);

return O:

11

GOING PARALLEL

Thread Hierarchy

Grid

Block (0, 0) | Block (1,0) | Block (2, 0)

Block (0, 1" Block (1,1) ' -Block (2, 1)

Block (1, 1)

13

Thread Hierarchy

Thread Hierarchy

* Blocks must be independent
* any possible interleaving of blocks should be valid

14

Thread Hierarchy

* Blocks must be independent
* any possible interleaving of blocks should be valid

* Blocks may coordinate but never synchronise

* shared queue pointer OK
* shared lock NOT OK

14

Thread Hierarchy

* Blocks must be independent
* any possible interleaving of blocks should be valid

* Blocks may coordinate but never synchronise

* shared queue pointer OK
* shared lock NOT OK

* This ensures some scalabllity

14

Thread Hierarchy

Thread Hierarchy

* Declare a specific type for the dimensions of the
grid (in number of blocks) and blocks (in number

of threads)

* dim3 var (x, Yy, 2)

15

Thread Hierarchy

* Declare a specific type for the dimensions of the
grid (in number of blocks) and blocks (in number
of threads)

* dim3 var (x, Yy, 2)

* Access the indexes and dimensions inside the
kernel
* gridDim.(x, y, z) and blockDim.(x, vy, z)
* threadldx.(x, y, z) and blockldx.(x, y, z)

15

Thread Hierarchy

blockldx.x = 0 blockldx.x = 2

|
0L 1.2/ 34 5617 8 9 1011 12/18/14 15

blockldx.x = 1 blockldx.x = 3

An array position (one dimensional grid and block) is given by:

Int index = threadldx.x + blockldx.x * blockDim.x;

16

Update the Kernel Call

Old:

mykernel <<< 1, 1 >>> (dev_a, dev_Db, dev_c);

New:

dim3 dimGrid (NUM_BLOCKS);
dim3 dimBlock (THREADS_PER_BLOCK);
mykernel <<< dimBlock, dimGrid >>> (dev_a, dev_b, dev_c);

17

Compiling CUDA

Compiling CUDA

* Nvcec <options> file.cu -0 executable

Compiling CUDA

* Nvcc <options> file.cu -o executable

* Some useful options
* -g - compiles with debug symbols

* -arch=sm_xx - compiles for a specific CUDA compatibility
version

* -ptx - generates the ptx instructions for the GPU

* -Xptxas -v - displays extra information about the kernel
(such as register spills, cache usage, etc)

18

