Programming Fundamentals
Minho Advanced Computing Center

OpenMP
ampereira@macc.fcen.pt

André Pereira

\.,N\\\N\\ «

[/

B

v

Architecture of a CPU

IC

The Bas

The Basic Architecture of a CPU FiHLL =

The Basic Architecture of a CPU

Core Core

Memo
Hierarchy

Core Core

CPU

The Basic Architecture of a CPU

Memoﬁ/ C

ontrofler L

— e

|
Core Core \
Memo
Hierarchy
Core Core \

CPU

i

The Memory Hierarchy

=

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)
storage
devices

L4: Main memory
(DRAM)

L1 cache
(SRAM)

CPU registers hold words
retrieved from cache memory.

L1 cache holds cache lines

/ P o \} retrieved from L2 cache.
L2: cache
(SRAM) } L2 cache holds cache lines

retrieved from L3 cache.
L3: L3 cache
(SRAM) } L3 cache holds cache lines

L5: Local secondary storage
(local disks)
L6: Remote secondary storage
(distributed file systems, Web servers)

retrieved from memory.

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks on
remote network servers.

i

e Misho

The Memory—CPU Performance Gap L&

Embedded memory clock speeds are hitting a wall
o i il
Data |Oca|ity IS crucial Processor Embedded
- The closer the data is to the chip the less time ~ § R e
is wasted §)
Key takeaways §

» Contiguous accesses to aligned data minimizes
time losses (spatial locality)
« Ex: traversing an array e
- Reuse of data keeps it in the faster memory PPFPIFF S PPP PP P I FF I PP S S S
storage (temporal locality) *Source: Hennessy and Patterson, 5% Editon

10 -

——— External Memory (Latency)

A Shared Memory Server

» One or multiple multicore CPU chips
» Fast CPU interconnection

- Memory address space shared among CPUs
 Unified address space
- Memory storage physically separated
* No explicit access to specific storage
* Could add performance penalties

Core Core
Memo
Hierar(;xy

Core Core
=" Multicore
[

Core Core
Memo
Hierarchy

Core Core
= Multicore

Shared Memory

T —

A Brief Introduction to C

[1,2,3]
[2,3,4]

map(sum, zip(a,b))

It's a compiled language (faster)
Closer to the OS level — more control over its behavior .

.)) . . import numpy
Performance oriented Python libraries are written in C a=numpy.array([0,1,2])

Wider availability of HPC libraries and frameworks b=numpy.array([3,4,5])
a+b

int a[3] = {0, 1, 2};
int b[3] = {3, 4, 5};
int c[3];

for (int i = @; i < 3; i++)
c[i] = ali] + b[i];

, Minho
Advanced

i Center

python

A Brief Introduction to C

It's a compiled language (faster)

Closer to the OS level- more control over its behavior
Performance oriented Python libraries are written in C
Wider availability of HPC libraries and frameworks

intx vector_add (int a[], int b[], int
intkx ¢ = (intx) malloc (size % sizeo

C is more verbose
Hard typing of variables (is it really a downside?)
Explicit memory allocation of dynamic data
structures
Fewer QoL improvements as standard

C++ helps addressing this issue

def vector_add (a, b):
¢ = map (sum, zip(a,b))

return c

for (int i = @; i < size; i++)

cli] = ali] + b[i];

return c;

size) {

|

Going Parallel - Threads

Threads

- Entities at the software or hardware level

» Execute a section of an application

- Multiple threads can execute concurrently

- Share the same memory address space
* as opposed to processes

Work sharing
» Divide the workload among threads
- Each thread processes a subset of
the overall workload
» Threads are scheduled to execute in
specific CPU cores
* Mostly handled by the OS

THREAD

DISTRIBUTE WORK AMONG THREADS

————————————————————————————————

Center
_____________________ .
> > 2 1 |

I

I

or Cke :

Memorx 1
Hierarchy :
Co ore :

I

i I

et Mdltico |
I

I

7I '

I

l P !

I

re re I

I

Memo '
Hierarchy :
Cor Cor I

I

. :

Multicore |

I

:

MAP THREADS TO PHYSICAL CORES

OpenMP MACC B

Several alternatives for multithread programming O p e n M P
®

» Posix threads — low level
* Close to the OS-level
» Require a lot of micromanagement
* Limited out-of-the-box functionality
» Frameworks (CILK, Threading Building Blocks, SYCL, ...) — 1

high level SYCL oneAPI
* Feature rich .

* Integrated management and scheduling of complex workloads
* Application must be designed according to the framework's
requirements
« OpenMP — somewhere in the middle
+ Platform independent
+ Often requires minimal modifications to existing sequential code
* Pragma-based
» Available for C, C++, and Fortran

The OpenMP Software Stack

i

The Fork-Join Model =R

Interleaving of sequential and parallel Parallel Task | Parallel Task Il Parallel Task Il
sections of the code _ Bjd. . ,,Ec:‘. —
- Application begins and ends execution Master Thre{
sequentially
* Threads are created and work is distributed at Parallel Task | Parallel Task Il Parallel Task IlI
the fork Master Thread .~ S
* Implicit synchronization at the join \ 7 Y - I\ P e
* % of code that can be parallelize limits _ E P N N e SO Y i | —

potential improvements
- See Amdahl’s law

OpenMP — Going Parallel G IN

#pragma omp parallel

Parallelism with OpenMP is implemented using [§ { | | |
pragma statements f for (i=1; i<n; i++)
Often require minimal modifications to existing | bli] = (ali] + ali-1]) / 2.0;

sequential code

Compiler creates parallel machine code based on the
pragmas

Pragmas can be ignored by the compiler to create
sequential code

Pragmas are affected to the section of code
next to them

for (i=1; i<n; i++) for (i=1; i<n; i++)

b[i] = (a[i] + ali-1]) / 2.0; 2 b[i] = (a[i] + al[i-1]) / 2.0;

fpragma omp parallel
Creates a parallel section of code
The code is replicated among the threads created

OpenMP — Going Parallel o 3

OpenMP provides a library of useful functions omp_set_num_threads (4):

May help control the execution flow of parallel regions _A_' #pragma omp parallel
Helpful to share the workload among threads : £

_ _ int thread_id = omp_get_thread_num ()
void omp set num threads (int x)

Sets the amount of threads to be created in the next
parallel code section

int n_threads = omp_get_num_threads ();
for (i=1; i<n; i++)
= (ali] + ali-1]) / 2.0;

int omp get num threads (void)
Returns the amount of threads of the current parallel code section

int omp get thread num (void)
Returns the identifier of the “current” thread being executed

Hello World - A Practical Example MALL ==

#include <stdlib.h>
#include <stdio.h>

[ampereiramc805-001 hello_world]$ make
gcc -c -Wall -Wextra -pedantic -02 -Wno-unused-parameter

src/hello_world_parallel.c -o

malin (L argc' charx argVH) { build/hello_world_parallel.o

gcc -Wall -Wextra -pedantic -02 -Wno-unused-parameter
orld_parallel.o

-0 bin/hello_world build/hello_w

|

printf ("Hello World\n");

return 0;

i Misho
Advanced

Hello World - A Practical Example MALL ==

#include <stdlib.h>
#include <stdio.h>

int main (int argc, charx argv[]) {

printf ("Hello World\n");

return 0;

Hello World - A Practical Example MALL ==

#include <stdlib.h>
#include <stdio.h>

main (int argc, charx argv(]) { » & -

printf ("Hello World\n");

[ampereira@c805-001 hello_world]$ sbatch run.sh
Submitted batch job 65062

[ampereira@c805-001 hello_world]$ cat hello_world.o
Hello World

return 0;

Hello World — Going Parallel MALL ==

#include <stdlib.h>
#include <stdio.h>

#include <omp.h>

int main (int argc, charkx argv[]) {

omp_set_num_threads (4);

#pragma omp parallel
{
int -

[ampereira@c805-001 hello_world]$ make
gcc -c -Wall -Wextra -pedantic -02 -Wno-unused-parameter src/hello_world_parallel.c -o

build/hello_world_parallel.o -fopenmp
gcc -Wall -Wextra -pedantic -02 -Wno-unused-parameter -o bin/hello_world build/hello_w
orld_parallel.o -fopenmp

nt thread_id omp_get_thread_num

n_threads = omp_get_num_threads kR

printf ("Hello World from thread %d of %d threads\n",
thread_id, n_threads);

Include the OpenMP header - #include <omp.h>
Add the —fopenmp option to the compiler
OpenMP code will be ignored otherwise, and the
application will not be parallelized

return 0;

Hello World — Going Parallel MALL ==

#include <stdlib.h>
#include <stdio.h>

#include <omp.h>

int main (int argc, charkx argv[]) {

omp_set_num_threads (4); [ampereiraac805-001 hello_world]$ cat hello_world.o

Hello World from thread 2 of 4 threads

#pragma omp parallel Hello World from thread @ of 4 threads

r
1

Hello World from thread 3 of 4 threads
Hello World from thread 1 of 4 threads

thread_id omp_get_thread_num
n_threads omp_get_num_threads -

printf ("Hello World from thread %d of %d threads\n",
thread_id, n_threads);

return 0;

OpenMP — Loop Parallelism L L B

Most parallelism potential in scientific and industry
code is in loops

Iteration through vectors and other list-like structures
Vector-vector, vector-matrix, and matrix-matrix - int i = 0; i < size; i++)
operations ' ali]l + b[i];

Operations on grids and meshes

intx vector_add (int all], int b[], int
intk ¢ = (intx) malloc (size * size

return c;

OpenMP — Loop Parallelism

How is the workload shared among threads? a

° omp_get thread num is often useful

 Possible distribution strategies b
- Single element round-robin

» Chunk division

- MG Misho

Advanced

43 e . Conter

", Minho
Advanced

OpenMP — Loop Parallelism FiHL L B

_ array index 0 1 2 3 4 5
How is the workload shared among threads? — e L g ., e L :

Omp_get thread _num is often useful
Possible distribution strategies

#pragma omp for to the rescue

Automatically distributes the for loop workload
among threads -

It's behavior can be tuned by appending C T X
nowait N

schedule (type)
collapse (n)
... 2

thread id 0 1

N Misho

Advanced

OpenMP — Loop Parallelism L L B

How is the workload shared among threads?

Omp_get _thread _num is often useful #pragma omp parallel
Possible distribution strategies {

#pragma omp for

#pragma omp for to the rescue for (i=1: i<n; i++)

Automatically distributes the for loop workload | bl[i] = (alil + ali-1]) / 2.0:
among threads
It's behavior can be tuned by appending
nowait
schedule (type)
collapse (n)

OpenMP — Shared and Private Data

#include <stdlib.h>
#include <stdio.h>

Variables declared outside of parallel code sections are
shared among threads

#include <omp.h>

]) int main (int argc, charx argv([]) {
Threads can concurrently read or write on the same variable
These variables can be privatized to each thread through | SR0- sCh B B CaisR A}
pragmas #pragma omp parallel
private (var name) {

. . — int thread_id = omp_get_thread_num -
flrStprlvate (var_name) int n_threads = omp_get_num_threads -
lastprivate (var_name) ASSUMED PRIVATE

printf ("Hello World from thread %d of %d
thread_id, n_threads);
Variables declared inside of parallel code sections are }
pnvate return @;

threads\n",

OpenMP - Shared and Private Data &

Variables declared outside of parallel code sections are
shared among threads

Threads can concurrently read or write on the same variable
These variables can be privatized to each thread through
pragmas
private (var_ name)
firstprivate (var_name)
lastprivate (var_name)

SHARED
PRIVATIZED

Variables declared inside of parallel code sections are
private

#include <stdlib. h>
#include <stdio.h>

#include <omp.h>

main (int argc, charx argv[]) {
int thread_id, n_threads;
omp_set_num_threads (4);

#pragma omp parallel private(thread_id,n_threads)
[

thread_id = omp_get_thread_num
n_threads = omp_get_num_threads

printf ("Hello World from thread %d of %d threads\n",
thread_id, n_threads);

1
J

return 0;

Lab Session

=] =

[G— [Ca—

e— — = —

) =] & =

alp oD T alp oD T

-Gl &> - -Gl b -
3] G G &G oo -Gl a &
H = Gl G &G &> -Gl a &G
m [—} -Gl ad &b &> -Gl aG &

Hello World! CHE I]

#include <stdlib.h>
#include <stdio.h>

main (int argc, charx argv([]) {

printf ("Hello World\n");

return 0;

cp -r SSCRATCH/../shared/tr0012022/labs/openmp SSCRATCH

#include <stdlib.h>
#include <stdio.h>

Parallelize the Hello World example #include <omp.h>
Execute the code and verify if the outputs are expected int main (int arge, charx argv(]) {
Vary the number of threads and see the impact on the outputs omp_set_nun_threads (4);

#pragma omp parallel
{
int thread_id = omp_get_thread_num

t n_threads = omp_get_num_threads

printf ("Hello World from thread %d of %d threads\n",
thread_id, n_threads);

return @;

Vector Addition L

A simple parallelization
Parallelize the code using #pragma omp parallel
Distribute the iterations among threads according to their id
You can use a round-robin distribution T T I T I
Execute and measure the performance of the code : inte ¢ = (inte) malloc (size * size

for (int i = @0; i < size; i++)

Parallel for loop
Remove the manual workload distribution
Distribute the iterations using a #pragma omp for . return c;
Execute and measure the performance of the code -

cli] = a[i]l + b[i];

Removing implicit synchronizations
Append the nowait directive to #pragma omp for

Removing hardcoded number of threads
Delete the call to the omp set num threads function
Check the job script to see how the number of threads can be set
Execute and measure the performance of the code for 2, 4, and 8

threads. How does the performance vary?

Thank you
for attending!

-

hello@macc.fcen.pt
macc.fcen.pt

J @minhoacc

