
OpenMP
Programming Fundamentals

André Pereira
Minho Advanced Computing Center
ampereira@macc.fccn.pt

The Basic Architecture of a CPU

The Basic Architecture of a CPU

The Basic Architecture of a CPU

The Basic Architecture of a CPU

The Memory Hierarchy

The Memory–CPU Performance Gap

Data locality is crucial
• The closer the data is to the chip the less time

is wasted

Key takeaways
• Contiguous accesses to aligned data minimizes

time losses (spatial locality)
• Ex: traversing an array

• Reuse of data keeps it in the faster memory
storage (temporal locality)

A Shared Memory Server

• One or multiple multicore CPU chips

• Fast CPU interconnection

• Memory address space shared among CPUs
• Unified address space
• Memory storage physically separated
• No explicit access to specific storage
• Could add performance penalties

A Brief Introduction to C

Why C (or C++)?
• It’s a compiled language (faster)
• Closer to the OS level – more control over its behavior
• Performance oriented Python libraries are written in C
• Wider availability of HPC libraries and frameworks

or

A Brief Introduction to C

Why C (or C++)?
• It’s a compiled language (faster)
• Closer to the OS level– more control over its behavior
• Performance oriented Python libraries are written in C
• Wider availability of HPC libraries and frameworks

But there are downsides…
• C is more verbose
• Hard typing of variables (is it really a downside?)
• Explicit memory allocation of dynamic data

structures
• Fewer QoL improvements as standard

• C++ helps addressing this issue

Going Parallel - Threads

Threads
• Entities at the software or hardware level
• Execute a section of an application
• Multiple threads can execute concurrently
• Share the same memory address space

• as opposed to processes

Work sharing
• Divide the workload among threads

• Each thread processes a subset of
the overall workload

• Threads are scheduled to execute in
specific CPU cores

• Mostly handled by the OS

THREAD

DISTRIBUTE WORK AMONG THREADS

MAP THREADS TO PHYSICAL CORES

OpenMP
Several alternatives for multithread programming

• Posix threads – low level
• Close to the OS-level
• Require a lot of micromanagement
• Limited out-of-the-box functionality

• Frameworks (CILK, Threading Building Blocks, SYCL, …) –
high level

• Feature rich
• Integrated management and scheduling of complex workloads
• Application must be designed according to the framework's

requirements
• OpenMP – somewhere in the middle

• Platform independent
• Often requires minimal modifications to existing sequential code
• Pragma-based
• Available for C, C++, and Fortran

The OpenMP Software Stack

The Fork-Join Model

Interleaving of sequential and parallel
sections of the code
• Application begins and ends execution

sequentially
• Threads are created and work is distributed at

the fork
• Implicit synchronization at the join
• % of code that can be parallelize limits

potential improvements
• See Amdahl’s law

OpenMP – Going Parallel

Parallelism with OpenMP is implemented using
pragma statements
• Often require minimal modifications to existing

sequential code
• Compiler creates parallel machine code based on the

pragmas
• Pragmas can be ignored by the compiler to create

sequential code
• Pragmas are affected to the section of code

next to them

#pragma omp parallel
• Creates a parallel section of code
• The code is replicated among the threads created

OpenMP – Going Parallel

OpenMP provides a library of useful functions
• May help control the execution flow of parallel regions
• Helpful to share the workload among threads

void omp_set_num_threads (int x)
• Sets the amount of threads to be created in the next

parallel code section

int omp_get_num_threads (void)
• Returns the amount of threads of the current parallel code section

int omp_get_thread_num (void)
• Returns the identifier of the “current” thread being executed

Hello World - A Practical Example

COMPILE

Hello World - A Practical Example

COMPILE

Hello World - A Practical Example

COMPILE EXECUTE

Hello World – Going Parallel

COMPILE

To use the OpenMP library
• Include the OpenMP header - #include <omp.h>
• Add the –fopenmp option to the compiler

• OpenMP code will be ignored otherwise, and the
application will not be parallelized

Hello World – Going Parallel

COMPILE EXECUTE

OpenMP – Loop Parallelism

Most parallelism potential in scientific and industry
code is in loops
• Iteration through vectors and other list-like structures
• Vector-vector, vector-matrix, and matrix-matrix

operations
• Operations on grids and meshes

THREAD

How is the workload shared among threads?
• omp_get_thread_num is often useful
• Possible distribution strategies

• Single element round-robin
• Chunk division
• …

OpenMP – Loop Parallelism

How is the workload shared among threads?
• Omp_get_thread_num is often useful
• Possible distribution strategies

#pragma omp for to the rescue
• Automatically distributes the for loop workload

among threads
• It’s behavior can be tuned by appending

• nowait
• schedule(type)
• collapse(n)
• …

THREAD

array index

thread id

0 1 2 3 4 5

0 1 2 3

OpenMP – Loop Parallelism

How is the workload shared among threads?
• Omp_get_thread_num is often useful
• Possible distribution strategies

#pragma omp for to the rescue
• Automatically distributes the for loop workload

among threads
• It’s behavior can be tuned by appending

• nowait
• schedule(type)
• collapse(n)
• …

OpenMP – Loop Parallelism

OpenMP – Shared and Private Data

Variables declared outside of parallel code sections are
shared among threads
• Threads can concurrently read or write on the same variable
• These variables can be privatized to each thread through

pragmas
• private(var_name)
• firstprivate(var_name)
• lastprivate(var_name)

Variables declared inside of parallel code sections are
private

ASSUMED PRIVATE

Variables declared outside of parallel code sections are
shared among threads
• Threads can concurrently read or write on the same variable
• These variables can be privatized to each thread through

pragmas
• private(var_name)
• firstprivate(var_name)
• lastprivate(var_name)

Variables declared inside of parallel code sections are
private

OpenMP – Shared and Private Data

SHARED

PRIVATIZED

Lab Session

Hello World!

Copy the exercises to your scratch
• cp -r $SCRATCH/../shared/tr0012022/labs/openmp $SCRATCH

Get familiar with OpenMP
• Parallelize the Hello World example
• Execute the code and verify if the outputs are expected
• Vary the number of threads and see the impact on the outputs

Vector Addition
1. A simple parallelization

• Parallelize the code using #pragma omp parallel
• Distribute the iterations among threads according to their id

• You can use a round-robin distribution
• Execute and measure the performance of the code

2. Parallel for loop
• Remove the manual workload distribution
• Distribute the iterations using a #pragma omp for
• Execute and measure the performance of the code

3. Removing implicit synchronizations
• Append the nowait directive to #pragma omp for

Extra: Removing hardcoded number of threads
• Delete the call to the omp_set_num_threads function
• Check the job script to see how the number of threads can be set
• Execute and measure the performance of the code for 2, 4, and 8

threads. How does the performance vary?

