
OpenMP
Advanced Concepts

André Pereira
Minho Advanced Computing Center
ampereira@macc.fccn.pt



OpenMP – Race Conditions

• Inadequate management of concurrent accesses may create 
wrong results

• Data races
• Read-after-write and write-after-read dependencies must be 

handled by the programmer

• OpenMP provides pragmas to control access to shared data
• #pragma omp critical

• Algorithms and/or data structures may need to be redesigned

10

x

x = x + 2 x = x - 3

7

12

9EXPECTED RESULT:



OpenMP – Reduction

Threads often compute a subset of a workload
• Partial results stored privately to each thread

• Improves performance (less contention to access 
shared data)

• Reduces the risk of data races

• Partial results must be merged after the parallel 
section

• can be implemented manually
• #pragma omp reduction does this 

automatically (restrictions apply)



OpenMP – Reduction



OpenMP – Thread Management

Controlling the sections of code that each thread executes can be achieved through:
• Each thread individual id
• OpenMP pragma directives

• Master: only the master thread executes the code section
• Single: the first thread to arrive executes the code section

= ≠



OpenMP – Loop Scheduling
Workloads can be classified as
• Regular: each loop iteration takes the same amount of time
• Irregular: loop iterations take different amount of time

The execution time of a parallel region is the time of the slowest thread

IRREGULAR WORKLOAD

REGULAR WORKLOAD



OpenMP – Loop Scheduling

Workloads can be classified as
• Regular: each loop iteration takes the same amount of time
• Irregular: loop iterations take different amount of time

The execution time of a parallel region is the time of the slowest thread



OpenMP – Loop Scheduling

OpenMP loop scheduling options
• static

• Iterations are assigned equally among
threads prior to the parallel section

• Small overhead
• Static user-defined chunk size

• dynamic
• Each thread gets iterations according to 

their throughput
• Higher overhead
• Static user-defined chunk size 

• guided
• Similar to dynamic but adjusts the chunk 

size during runtime
• Less overhead than dynamic

STATIC SCHEDULING

DYNAMIC SCHEDULING



OpenMP – Loop Scheduling

OpenMP loop scheduling options
• static
• dynamic
• guided

Chunk size can also be user defined
• Set as a single iteration by default
• Larger chunks require less scheduling

overhead
• Smaller chunks are better to schedule irregular 

workloads



Lab Session



Vector Sum
1. A simple parallelization

• Parallelize the code using #pragma omp parallel
• Distribute the iterations using a #pragma omp for directive
• Use the critical directive on shared data if necessary
• Execute and measure the performance of the code

2. Privatize shared data
• Privatize the accesses to shared data

• each thread should contain it’s copy of sum
• Implement a manual merge of the partial results
• Execute and measure the performance of the code

3. Removing implicit synchronizations
• Replace the manual merge of the results with OpenMP’s 

reduction directive
• Execute and measure the performance of the code



Pi Calculation - Integral Approximation

Pi can be calculated through the area of a circle
• The integral of the function of a circle is equivalent
• Integrals can be approximated through iterative methods



For loop parallelization
• Parallelize the code using the omp parallel and omp for 

directives
• Privatize variables if needed
• Each thread should compute a partial sum (avoid race 

conditions!)
• Merge the partial results using OpenMP directives
• Execute the code and measure its performance

Pi Calculation - Integral Approximation




