Minho Advanced Computing Center

ampereira@macc.fccn.pt

OpenMP
Advanced Concepts

André Pereira



! SN Misho
Advanced

OpenMP — Race Conditions FiHL L B

10

Inadequate management of concurrent accesses may create
wrong results
Data races X=X+2 X =

X
Read-after-write and write-after-read dependencies must be
handled by the programmer

OpenMP provides pragmas to control access to shared data
fpragma omp critical

Algorithms and/or data structures may need to be redesigned




OpenMP — Reduction

Threads often compute a subset of a workload

Partial results stored privately to each thread

Improves performance (less contention to access
shared data)
Reduces the risk of data races

Partial results must be merged after the parallel
section
can be implemented manually
#pragma omp reduction does this
automatically (restrictions apply)

int partial_result[NUMBER_OF_THREADS];
int final_result = 0;

#pragma omp parallel
{

#pragma omp for
for (int 1 = 0; 1 < n; i++) {

partial_result[thread_id]| = x;
}
}
for (int i = @; i < NUMBER_OF_THREADS; i++)
final_result += partial_result[i];

int result;

#pragma omp parallel
{

#pragma omp for reduction(+:result)

for (int i = @; i < n; i++) {

result += Xx;




OpenMP — Reduction L

int partial_result [NUMBER_OF_THREADS] ;
int final_result = 0;
int result;
#pragma omp parallel
{p 9 Rk #pragma omp parallel

#pragma omp for {

. . . #pragma omp for reduction(+:result)
for (int 1 = 0; i < n; i++) { prag P

for (int i = 0; i < n; i++) {

partial_result[thread_id]| = x;

result += x;

}
for (int i = @; i < NUMBER_OF_THREADS; i++)
final_result += partial_result[i];




OpenMP — Thread Management L L B

Controlling the sections of code that each thread executes can be achieved through:

Each thread individual id

OpenMP pragma directives
. only the master thread executes the code section
: the first thread to arrive executes the code section

LNt sum; int sum; int sum;

#pragma omp parallel ‘ #pragma omp parallel
{ - {

#pragma omp parallel
{

if (thread_id == 0) #pragma omp master
sum = 0; sum = 0;

#pragma omp single
sum = 0;




OpenMP — Loop Scheduling

Workloads can be classified as

. each loop iteration takes the same amount of time
. loop iterations take different amount of time

The execution time of a parallel region is the time of the slowest thread

#pragma omp parallel
{

#pragma omp parallel
{

#pragma omp for
for (int i = @; i < n_particles;
float d = distanceToParticle (1i);

#pragma omp for

for (int i = @; 1 < n_particles; i++) {
e = calculateEnergy (1i);

if 1000
calculateEnergy (i);

| ’
J

0;
REGULAR WORKLOAD

IRREGULAR WORKLOAD




OpenMP - Loop Scheduling

Workloads can be classified as

» Regular: each loop iteration takes the same amount of time

* lrregular: loop iterations take different amount of time

The execution time of a parallel region is the time of the slowest thread

Thread

7

Time

Thread

Time

lllllllllllllllllllllll
llllllllll



OpenMP loop scheduling options

lterations are assigned equally among
threads prior to the parallel section
Small overhead

Static user-defined chunk size

Each thread gets iterations according to
their throughput

Higher overhead

Static user-defined chunk size

Similar to dynamic but adjusts the chunk

size during runtime
Less overhead than dynamic

OpenMP — Loop Scheduling

Thread O
Thread 1
Thread 2

Thread 3

Thread O
Thread 1
Thread 2

Thread 3

STATIC SCHEDULING

ito

it1

it2

it3

it4

its

ité

it7

it8

it9

it10

it 11

time

DYNAMIC SCHEDULING

ito

its

it10

it 11

it1

ité

it2

it8

it3

it4

it7

it9

time



g Micho
Advanced

OpenMP — Loop Scheduling MACC =

OpenMP loop scheduling options

#pragma omp parallel
{

#pragma omp for schedule(dynamic,10)

| for (i=1; i<n; i++)
Chunk size can also be user defined bli] = (al[i]l + ali-1]1) / 2.0:

Set as a single iteration by default
Larger chunks require less scheduling
overhead

Smaller chunks are better to schedule irregular

workloads



Lab Session

=] =

[G— [Ca—

e— — = —

) =] & =

alp oD T alp oD T

-Gl &> - -Gl b -
3 ] G G &G oo -Gl a &
H = Gl G &G &> -Gl a &G
m [—} -Gl ad &b &> -Gl aG &



Vector Sum b £

A simple parallelization
Parallelize the code using #pragma omp parallel
Distribute the iterations using a #pragma omp for directive
Use the critical directive on shared data if necessary
Execute and measure the performance of the code @ int vector_sum (int array[], int size) {

int sum = 0;

Privatize shared data

Privatize the accesses to shared data for (int i = @; i < size; i++)
each thread should contain it's copy of sum

Implement a manual merge of the partial results
Execute and measure the performance of the code

sum += arrayli];

return sum;

Removing implicit synchronizations
Replace the manual merge of the results with OpenMP’s
reduction directive
Execute and measure the performance of the code



Pi Calculation - Integral Approximation -~ &

I N Misho

x=1 x=1
Pi can be calculated through the area of a circle
 The integral of the function of a circle is equivalent
* Integrals can be approximated through iterative methods
1.2 * h
\ /rl -
A )
aF N
VZ . N
I
I
x=-1 | x=1
1
X
—>»l h |-




Pi Calculation - Integral Approximation

Parallelize the code using the omp parallel and omp for
directives

Privatize variables if needed

Each thread should compute a partial sum (avoid race
conditions!)

Merge the partial results using OpenMP directives
Execute the code and measure its performance

J1x.2 *h

\7‘ m

A

=1

5 XA m——————

double pi_integration (long num_steps) {
int 1;
double x, pi, sum =

)le step = 1.0 double) num_steps;

for (i = @; 1 < num_steps; i++) {
= (i + 0.5) x step;
sum = sum + 4.0 / (1.0 + X * X);

pi = step * sum;

return pi;




Thank you
for attending!

-

hello@macc.fcen.pt
macc.fcen.pt

J @minhoacc



