Tuning Pipelined Scientific Data Analyses for
Efficient Multicore Execution

Andre Pereira
Department of Informatics
LIP and University of Minho
Braga, Portugal
Email: ampereira90@gmail.com

Abstract—Scientific data analyses often apply a pipelined
sequence of computational tasks to independent datasets. Each
task in the pipeline captures and processes a dataset element,
may be dependent on other tasks in the pipeline, may have a
different computational complexity and may be filtered out from
progressing in the pipeline. The goal of this work is to develop an
efficient scheduler that automatically (i) manages a parallel data
reading and an adequate data structure creation, (ii) adaptively
defines the most efficient order of pipeline execution of the tasks,
considering their inter-dependence and both the filtering out rate
and the computational weight, and (iii) manages the parallel
execution of the computational tasks in a multicore system,
applied to the same or to different dataset elements. A real case
study data analysis application from High Energy Physics (HEP)
was used to validate the efficiency of this scheduler. Preliminary
results show an impressive performance improvement of the
pipeline tuning when compared to the original sequential HEP
code (up to a 35x speedup in a dual 12-core system), and
also show significant performance speedups over conventional
parallelization approaches of this case study application (up to
10x faster in the same system).

Keywords—High Throughput Computing, Pipeline,
Scheduling, Execution Efficiency, Scientific Analyses.

Task

I. INTRODUCTION

Scientific software to analyse experimental data to extract
useful information (to answer questions, to test hypotheses or
to prove theories) are often developed by scientists to automate
the analysis of very large datasets. These analyses repeatedly
compute a set of tasks, in a given order, with independent
datasets and store the relevant results. This set of tasks is
structured in a processing pipeline, where each stage may
contain a simple or complex computing tasks, followed by
an evaluation of a given data property, aiming to discard
irrelevant information from going through the rest of the
pipeline. This type of scientific code is here addressed as a
pipelined scientific data analysis.

The intensive use of these analyses and the increasing com-
plexity of their algorithms require an efficient data processing
throughput. Current computer systems are becoming highly
parallel even at the processing devices, through increasing
values in multiple CPUs per device, from multicore devices
(currently up to 18 cores at Intel) to many-core devices (36
tiles of dual cores also at Intel).

Antonio Onofre
Department of Physics
LIP and University of Minho
Braga, Portugal
Email: Antonio.Onofre@cern.ch

Alberto Proenca
Department of Informatics
University of Minho
Braga, Portugal
Email: aproenca@di.uminho.pt

Scientists were forced to move into parallel software and
their approach to this new paradigm applied to their data
analyses, which are considered as embarrassingly parallel
applications, typically resorts to conventional parallelization
schemes: simultaneous processing different dataset elements.
These techniques may improve their data analysis performance
and throughput, but not every code scales well in a multicore
environment (e.g, when conflicts occur in concurrent memory
accesses), and their behaviour is also highly dependent on
the computational complexity of the pipeline stages: the code
under execution may be compute-bound (more computing
resources are required), or memory-bound (better data locality
is required and/or wider memory bandwidth) or even I/O-
bound (too much data required from secondary storage for
so little processing).

Sophisticated mechanisms are required to better explore
parallelism. Computer scientists have the responsibility to
develop and provide adequate tools for scientists to aid them
in the development of efficient parallel code, hiding some of
the complexities to deal with parallel computing environments.
One such tool is currently under development with this goal:
a Highly Efficient Pipelined Framework, HEP-Frame [1],
which lets the user provide the raw data and the sequential
computational tasks to perform at each pipeline stage and their
inter-dependencies, and HEP-Frame automatically builds an
efficient data structuring and manages the parallel processing
of the data analyses.

The latest version of HEP-Frame did not explore yet the
power of these sophisticated mechanisms to better explore par-
allelism. This paper addresses the development and validation
of a scheduler to efficiently manage the parallel data setup
and the re-ordering and execution of the pipeline stages in
a multicore environment. This scheduler acts at a multi-level
stage: to load the raw data into adequate data structures (the
data setup), and to improve the execution efficiency through
pipeline re-ordering (respecting user-defined dependencies be-
tween stages) and load distribution across all available comput-
ing resources. To validate the efficiency of HEP-Frame a real
case study from High Energy Physic (HEP) was selected, were
data collected from sensors at the ATLAS Experiment (CERN)
[2] were analysed to prove a theory (the Higgs boson) under
three distinct configurations: (i) a memory-bound code, when

the measured data from sensors is assumed 100% accurate,
(i) a compute-bound code, when the measured values are
within 99% confidence interval (and over 1k variations for
each measured value was considered) and (iii) when the HEP
scientist decided to swap two pipeline stages for other two with
the same dependencies but different properties (one filters out
more elements, the other is computationally heavy).

This communication is structured as follows: section II
describes the general structure of pipelined scientific data anal-
yses; section III presents the scheduler and details the different
techniques used to explore parallelism and improve application
performance; section IV presents three real pipelined scientific
data analyses to evaluate the scheduler; section V assesses and
evaluates the performance of the scheduler; section refconclu-
sions concludes the communication with a critical analysis and
suggestions for future development.

II. PIPELINED SCIENTIFIC DATA ANALYSES

In this communication a scientific data analysis is a process
that converts raw scientific data (often from experimental
measurements) into useful information to answer questions,
test hypotheses or prove theories. When dealing with large
amounts of experimental data, data is read from one or more
files in variable sized chunks or datasets, and placed into an
adequate data structure. When the processing is computational
demanding, each dataset element is then processed by a
pipeline of propositions: each contains a computational task
that usually modifies element properties, may depend from
previous propositions and may be followed by an evaluation
of a criterion to decide if the element is discarded or processed
by the next proposition. Figure 1 shows a typical structure of
such scientific data analysis.

P

Load a Dataset
Element

v

Task 1

3

For Each Dataset Element

Store Results

I

Fig. 1: Structure of a typical flexible pipelined scientific data
analysis.

In computational terms, the pipeline processing duration of
each dataset element is variable as it may be discarded by a

proposition. The execution time of each individual proposition
is also dependent on the computational task, whose complexity
may vary according to different dataset properties. The default
organization of the pipelined propositions, as defined by
the scientist, is not guaranteed to be the most efficient, as
propositions with long execution times might be placed earlier
in the pipeline, while propositions that discard more dataset
elements might be executed in the later stages. A formalization
of this pipelined is described in depth in [1].

Parallel implementations of these analyses where different
threads process different dataset elements are often used in
pipelined scientific data analysis, as there are usually no
data dependencies among dataset elements. However, this
naive approach does not exploit the characteristics of the
pipeline, which, if taken into account, may provide significant
performance improvements.

III. SCHEDULING WITH PIPELINE REORDERING

Propositions are characterized by their execution time and
the amount of data they discard, as explained before. Al-
though the propositions order in the pipeline may have some
meaning in the context of the scientific domain, if their inter-
dependencies are respected, reordering the pipeline may lead
to a faster analysis execution, by combining two properties of
each proposition: their execution time and the amount of data
elements they discard. If the propositions that discard more
elements are placed earlier in the pipeline and the heavier
propositions in later stages, the performance improvements can
be substantial.

HEP-Frame has a sequential mechanism to reorder proposi-
tions in pipelined scientific data analyses, as presented in [1].
It monitors the weight of propositions at runtime and attempts
to reorder the pipeline at given checkpoints. This mechanism
solves an NP-Complete problem, the Hamiltonian path [3],
which computes the pipeline order with the lowest cost, given
the proposition weights and respecting all user-defined depen-
dencies. However, this algorithm had a significant impact in
the overall execution time and required a considerable number
of iterations to obtain a good pipeline order. A preliminary
multithreaded implementation of this algorithm was tested, but
the required thread synchronization limited its scalability.

A two-stage pipeline-aware scheduler for multicore envi-
ronments is proposed in this paper, which aims to efficiently
use the available computational resources in multicore CPU
devices. The first stage implements a parallel file reading and
data structure creation, here considered as the data setup,
while the second stage manages the parallel execution of
propositions of the same dataset element, the parallel execution
of multiple dataset elements, and a soft reordering of the
propositions pipeline, as presented in figure 2. This scheduler
was implemented in HEP-Frame.

Most scientific data analyses have no data dependencies
and are designed to process large amounts of files. Scientific
applications usually sequentially read chunks of files and then
process the data in parallel. The proposed scheduler reads
these files and builds the data structure in parallel, assigning

Fig. 2: Scheduler data setup and processing balancing: (a)
initial and final configuration when the data setup execution
time (DST) is much longer than data processing execution
time (DPT); (b) final configuration when DPT is much
longer than DST; (c) a possible final configuration otherwise.

a subset of the files to each thread. The scheduler starts with
an initial configuration with a higher amount of threads to
perform the data setup (reader threads) than threads to process
the data (process threads). If the processing is much longer
than the data setup, the scheduler should allocate more threads
to the processing. If the data setup time is similar to the
processing, an intermediate configuration should be used. A
heuristic to perform this balance at runtime is currently being
developed.

The reader threads may not be able to load data with the
same rate as it is computed by the process threads, which
leads to starvation. Two alternatives approaches to solve this
problem were tested. In the first approach, if a process thread
does not have data available to process it is put to sleep.
Reader threads periodically send wake up signals to sleeping
process threads after loading defined amounts of data. In
the second approach, if a process thread does not have data
available to process it is put to sleep by a defined amount
of time. Preliminary tests showed that the second approach
provided the best performance as it had a minimal overhead,
as it is only required a very small amount of synchronizations
among threads, and reduced thread downtime. The amount of
time that a process thread is sleeping in the first approach is
dependent on the time that it takes to load a chunk of data; if
the processing is complex it should start as soon as a dataset
element is loaded and not after a chunk. This is not an issue
if the thread sleeping time is independent on the complexity
of the data.

The scheduler stores the propositions identification in a
table, as presented in figure 3, which is then used to feed the
process threads. A directed graph is created when initializing
the scheduler, in which propositions are represented as nodes
and the dependencies between them as the edges. A standard

Dependencies:

[eoT-[oi]+[es] [e2}-{pe]
Before
— p0e0 || p1e0 | --- | pbel | | pOel | | plet |- |pel | »
?,f:erl Propositions ~ _LP0S0|[p4et || p2et | - >
9 1934 —{p3e0][p2e0 |[p5e0} - »
2 (5.6 ~{ pte0 | paet][pbe0 } - -

— pOel | pled |[poe2 | - -»

Fig. 3: Sample table for 7 propositions p with the specified
dependencies, with their execution before and after using the
scheduler for various dataset elements e.

Breadth-First Search (BFS) algorithm [4] is used to obtain a
list of all paths in the graph. In this context, a path represents
a chain of dependencies, such as props depends on prop; that
depends on propg. The longest chain of dependencies is used
to create the table, with one table line per proposition. The
remaining chains of dependencies are inserted into the table,
with the first proposition in the chain in the first line of the
table. The propositions without dependencies are also inserted
in the first line of the table.

When edges connect all nodes in a graph, the complexity of
the BFS algorithm is O(| IV |?). However, the amount of propo-
sitions and dependencies in pipelined scientific data analyses
is usually not large enough to make the BFS computation
a bottleneck (18 propositions and 33 dependency edges for
the application presented in section IV). Even though, the
BFS algorithm execution time was further reduced by: (i)
the scheduler, which stores the dependencies as the user
defines them, keeping track of which propositions start a
chain of dependencies and (ii) the improved BFS algorithm,
which starts to search for chains of dependencies only at the
propositions the scheduler defined as starting one chain (the
original algorithm searches at every proposition for a chain-
starting).

The scheduler assigns the propositions to the process
threads, one at a time, in the order that they are placed in
the table. Moving from one line of the table to the other
implies that all previous propositions executed and did not
discard the dataset element being processed. This ensures that
the dependencies are kept. In the table of figure 3, proposition
6 can only be executed after propositions 2, 3 and 5. This
mechanism adds barriers between propositions that do not have
dependencies, but it is useful to implement soft reordering
of the pipeline. If a proposition discards the current dataset
element all other threads stop processing and the scheduler
assigns propositions relative to the next dataset element.

The number of process threads may be higher than the

number of propositions in a given line of the table. Since
it is not possible to assign propositions from the next line,
the scheduler assigns propositions not yet applied to the next
element in the dataset. However, the scheduler may later assign
an available proposition of the previous dataset element to the
process thread. This behaviour is schematized in figure 3. The
scheduler has a buffer to keep track of the propositions applied
to the each dataset element that started being processed but did
not finish execution.

As mentioned before, the pipeline reordering mechanism
presented in [1] is not scalable. The proposed scheduler im-
plements a less strict pipeline reordering mechanism based on
the presented proposition table layout. The scheduler monitors
the propositions execution, assigning each a weight 70% based
on the data filtering ratio and 30% on the execution time
(these values were obtained through preliminary tests but a
dynamic approach is currently being evaluated). The order of
the propositions is ensured by the lines of the table, which act
as barriers. Propositions should be moved through the different
levels of the table, in such a way that lighter propositions,
which filter more dataset elements and have a shorter execution
time, are placed earlier, while heavier propositions placed in
the later lines of the table.

Moving independent propositions inside the table is straight
forward as they are only restricted by the availability of lines
on top or bottom of them, depending on which way they are
moved. However, if the scheduler moves a proposition that is
part of a chain of dependencies, all precedent or subsequent
propositions of the chain will also be moved, depending on
which way the original proposition is moved. An example
of this behaviour is presented in figure 4. Lists of precedent
and subsequent propositions for each proposition are used to
optimize the process of moving a proposition in a chain of
dependencies. This avoids traversing the table to check if each
proposition is dependent on the one to move. Those lists also
store the position of the propositions in the table to reduce
access times.

Level | Propositions 1: shift down prop 4

0 0,3,4 (no dependencies)

1 1,2 2: shift up prop 6

2 56 (depends on prop 2)
* 1

Level | Propositions Level | Propositions

0 0,3 2 70 0,3,2

1 1,2, 4 1 1,4, 6

2 5,6 2 5

Fig. 4: Proposition table update as the scheduler shifts
propositions 4 and 6.

A simple heuristic is used to sort the propositions in the
table. Propositions with a weight in the range of 0 to 0.33
should be placed in the first line, weight between 0.33 and

0.66 should be placed in the second line and the heavier
propositions should be placed in the third line. Since there are
as many table levels as the number of propositions is in the
longest dependency chain, the scheduler attempts to move a
proposition by only one level if it is not in the correct position.
This soft reordering of the pipelined is performed at predefined
checkpoints (after processing 200 dataset elements).

Thread Building Blocks [5] Flow Graphs have a similar
representation of pipeline execution of tasks. This mechanism
takes into account dependencies among group of propositions
but only extracts parallelism by simultaneous execution of
non-dependent propositions. It neither attempts to reorder
the pipeline nor extracts parallelism of different dataset el-
ements and propositions execution simultaneously. While it
may perform well on a wider set of applications it was not
fully adapted to the requirements of pipelined scientific data
analysis.

A similar optimization of the pipeline approach to task
execution was also presented in [6], but targeting a wider range
of applications. In this work, the authors did not take into
account that the pipeline in scientific data analyses may discard
dataset elements and only focused on the parallelization of
tasks, rather than the pipeline reordering. An out-of-order
execution of the tasks is performed to diminish the time that
the CPU cores idle due to data dependencies among tasks, in
a similar way to instruction level parallelism.

IV. THE CASE STUDIES

HEP scientists at the ATLAS Experiment [2] at CERN
developed a scientific data analysis code, the ttH analysis,
to study the associated production of top quarks with the
Higgs boson [5], following head-on proton-proton collisions
(known as events) at the Large Hadron Collider (LHC). This
code was selected to validate the HEP-Frame scheduler and
to evaluate its performance impact. Figure 5 represents the
final state topology of a proton beam collision for the ttH
production.

The final state of an event is recorded by the ATLAS particle
detector, which measures the characteristics of the bottom
quarks (detected as jets of particles due to a hadronization
process) and leptons (both muons and electrons), but not the
neutrinos, as they do not interact with the detector sensors.

ttH analytically computes the characteristics of the neutri-
nos with known information, to reconstruct both top quarks
and the Higgs boson. This process, known as kinematical
reconstruction, tests every combination of bottom quarks
and leptons (there may be more than needed due to other
background interactions among particles), which are stored
in a specific structure in pre-defined files provided by the
experiments at the LHC. t¢H may sample the kinematical
reconstruction process within the 99% confidence level, to
reduce the relative measurement uncertainty of the sensors in
the ATLAS Experiment detector, which has a direct impact on
the complexity of the performed computation per event.

ttH has 18 stages to perform a computational task and
to filter out measured events that do not comply with the

Bottom Quark (b)

Muon (p*)
W Boson (W)
Neutrino (v,)
Proton Beam
- o _ Proton Beam
Neutrino (v,) *\ iggs Boson (H)
&
S
@ =

W Boson (W") \

Bottom Quarks (b)

Electron (&) Bottom Quark (b)

Fig. 5: Schematic representation of the ¢ system and Higgs
boson decay.

theoretical model expectations, each coded as a proposition
in HEP-Frame, with the dependencies specified in figure 5.
In the original analysis code their id number represented their
execution order in figure 6 (see “Before”). The propositions
inside the blue boxes do not have dependencies among them
but depend, as a group, on other propositions.

Three versions of the t£H analysis were considered as repre-
sentative case studies: (i) one considers that the data measured
by the ATLAS detector is 100% accurate when reconstructing
the event, ttH_as (accurate sensors), a memory-bound code
in most computing systems; (ii) another considers that the
ATLAS detector has a measurement accuracy error up to +1%
and performs an extensive sampling within the 99% confidence
interval when reconstructing the event, named ttH_sci
(sensors with a confidence interval), from which only the
best reconstruction is considered; this version performs 1024
samples: each requires the generation of 30 different pseudo-
random numbers, to a total of approximately 30K numbers per
event, leading to a compute-bound code; (iii) the third version
ttH_scinp (sci with a new pipeline), replaces propositions
13 and 16 to perform different operations on the data element,
maintaining the same overall proposition dependencies and the
same sampling of the confidence interval of ttH_sci; this
version is also compute-bound.

The default organization of the pipelines in these analyses
was setup by the HEP scientist that developed the code and
it was already optimized under his point of view: the heavier
proposition is the last pipeline stage, while previous stages
filter out a significant percentage of events (dataset elements).

The 18 ttH_as propositions have execution times always
shorter than 104 nanoseconds, of which 16 pass more than
90% of the events. Two propositions have a passing ratio of
63% and 50%, respectively. ttH_sci has the same filtering
ratios, since it shares the same pipeline as ttH_as, but has
two heavier propositions with an execution time of 106 and
108 nanoseconds, respectively. The new proposition 13 in
ttH_scinp has a longer execution time than in ttH_sci,
around 108 nanoseconds, and proposition 16 has now a passing

Before:

—&-G-@---E@-@—

After:

Fig. 6: Schematic representation of the possible parallel
proposition execution before and after using the scheduler,
respecting the dependencies in the ttH applications.

TABLE I: Characterization of the 18 propositions in the ttH
applications.

Execution Time (nanoseconds)

[10%,10°] | [105,10* | [10%,10%] | [10%,0]
ttH_as 0 0 1 17
ttH_sci 1 0 1 16
ttH_scinp | 2 0 1 15

ratio of 30%, versus 99% in ttH_sci. Tables I and II
summarize this information.

The parallel implementations of these three analyses fol-
lowed two distinct conventional parallelization approaches
for embarrassingly parallel problems, often used in scientific
computing. The first approach uses a sequential code for the
data setup and a parallel approach to process events from
separate files at each core of a shared memory environment
at a multicore system; each thread runs a sequential version
of the full pipeline, repeating this process for each input
file (here addressed as S+MT7, Sequential+MultiThreading).
This approach simply uses OpenMP [7]. The second approach
uses two sets of parallel processes, one for the data setup
and the other to process the events, in a distributed memory
environment at the same multicore system (addressed as MP,
MultiProcessing). Both approaches are illustrated in figure 7.

TABLE II: Characterization of the 18 propositions in the ttH
applications.

Passing ratios (% of passing dataset elements)

[100%, 99%][| [99%, 90%[| [65%, 60%[| [50%, 0%
ttH_as 15 1 1 1
ttH_sci 15 1 1 1
ttH_scinp | 14 1 1 2

.
0
o
o
»2 [DataSetup] [Processing | [Data Setu] Processing|
0s

Fig. 7: Schematic representation of the conventional S+MT
(top) and MP (bottom) parallelizations.

V. PERFORMANCE RESULTS AND DISCUSSION

The testbed used for the quantitative evaluation of the HEP-
Frame with the two-stage scheduler was a dual socket cluster-
computing node with twelve-core Intel Xeon E5-2695v2 Ivy
Bridge CPU devices at 2.4GHz [8]. The three configurations of
the case study, as described before, were ttH_as, ttH_sci
and ttH_scinp. A k-best measurement heuristic [9] was
used to ensure that the results can be replicated, with k = 5,
a minimum of 15 measurements and a maximum of 25. The
scheduler was tested using 6, 12 and 24 cores (1 thread/core).
The ttH analyses were tested with 128 files, each with 26000
events. Preliminary tests suggested that splitting in half the
total number of threads to data setup and processing provided
an acceptable default configuration to test these scientific
analyses.

Figure 8 shows the impact of the scheduler on the speedup
of ttH_sci and ttH_scinp, when compared to their
sequential execution. Since the order of the pipeline in the
ttH_sci is close to its optimum configuration the maximum
achieved speedup is only 16x for 24 threads, due to the parallel
data setup and parallelization of the proposition execution.
However, the performance of ttH_scinp is improved by
a factor of 39 for 24 threads. The superscalar speedups
of ttH_scinp, for every thread count tested, is due to
the combination of the parallel data setup with the pipeline
reordering, which is less optimized than on ttH_sci by
default. In this particular case, proposition 13 is placed at the
end of the pipeline and proposition 16 is moved to its initial
stages.

Figures 9 and 10 show the comparison between the sched-
uler and two conventional parallelization schemes for scientific
applications presented in section IV, S+MT and MP respec-
tively. The scheduler outperforms the S+MT parallelization
up to 7x for the ttH_as application, as it benefits from the
parallel data setup due to the small amount of computation per-
formed per dataset element, and up to 10x for the ttH_scinp
application, as the pipeline reordering has a significant impact
on this application performance. The scheduler also outper-
forms the more complex MP parallelization, but with smaller
performance improvements: both ttH_as and ttH_scinp
had speedups of 3.5 and 4.2, respectively.

Hardware multithreading (Intel Hyperthreading) did not pro-

Scheduler Impact on Speedup vs Sequential
Original Pipeline Order

=@=ttH_sci

ttH_scinp

01
6 12 24
#threads

Fig. 8: Speedup comparison between the proposed scheduler
and the sequential implementation of the t#H application.

Scheduler Impact on Speedup vs S+MT Parallelization

64 e=@==ttH_as
32 o=@ ttH_sci
ttH_scinp
Q _
5 16
°
7]
2 o8
%)
04
o /

01

6 24

12
#threads

Fig. 9: Speedup comparison between the proposed scheduler
and a conventional sequential + multithreading
parallelization in HEP-Frame.

Scheduler Impact on Speedup vs MP Parallelization

08

=@=ttH_as
=@=ttH_sci
a .
5 04 ttH_scinp
©
]
]
Q
n
02
01
6 12 24

#threads/cores

Fig. 10: Speedup comparison between the proposed
scheduler and a conventional multiprocess parallelization in
HEP-Frame.

vide significant performance gains for any of the tested anal-
yses. The processing throughput of the sequential ttH_as,
ttH_sci and ttH_scinp was 557, 79 and 572 dataset
elements per second, and was improved to 17478, 1617 and
22245 dataset elements per second. With the scheduler, the
cost of sampling 1024 values within the confidence interval
for each of the 30 sensor data for each event in ttH_sci is
only a decrease in throughput by a factor of less than 11, which
greatly improves the quality of the results over ttH_as.

As mentioned before, the higher speedups achieved for the
ttH_as application indicate that the scheduler works best
for memory-bound applications due to the parallel data setup.
In this case, the peak memory bandwidth increased from
3.5 GB/s, in the S+MT parallelization, to 4.9GB/s using the
scheduler for 24 threads. An analysis of the scheduler with
the Intel VTune profiler [10] showed that process threads were
waiting for data to be loaded less than 10% of the overall data
setup time. It also showed that the overhead of the pipeline
reordering was less than 5% for ttH_as and less than 1%
for both ttH_sci and ttH_scinp, for 24 threads.

Fig. 11: CPU usage with 24 threads and overall execution
time: ttH_as (top, 54s), ttH_sci (middle, 580s), and
ttH_scinp (bottom, 120s).

Figure 11 shows the CPU usage of the three applications
obtained with Intel VTune. While ttH_sci and ttH_scinp
use 100% of the CPU almost all the time, due to their
compute-bound nature, ttH_as only has high CPU usage
when combining the data setup with proposition processing,
as it heavily relies on how fast the CPU cores get the data
from memory. This analysis suggests that there is still room
to improve the scheduler efficiency: the heuristic to balance
reader threads with processing threads needs to be refined.

VI. CONCLUSIONS AND FUTURE WORK

This communication describes a two-stage scheduler for
pipelined scientific data analyses, where large raw experimen-
tal data is converted into useful information through complex
computational tasks: (i) it implements a parallel reading of
input files and building of an adequate data structure; and
(ii) it manages the parallel execution of propositions of the
same dataset element, the parallel execution of multiple dataset

elements, and a soft reordering of the propositions pipeline to
filter out most of the elements at the earliest time.

The scheduler was implemented into HEP-Frame, a frame-
work under development to aid the efficient execution of
scientific code. This code is developed by the end user, who
may not have explored the potential of code vectorization;
current version of HEP-Frame may only aid in compiling the
code with this flag on, together with a report generation of
vectorization results, and let the scientist improve the code
performance if she/he wishes.

The scheduler was validated with a real case study from
HEP scientists: the ttH particle physics event data analysis,
developed and used by CERN researchers in a production en-
vironment, with 18 propositions in the pipeline. Three versions
of tt H were selected: a configuration used for fast preliminary
event analysis, ttH_as (assuming accurate sensors), with a
memory-bound behaviour; a configuration oriented to perform
a more extensive analysis of the events, ttH_sci (1024
variations within the sensor confidence interval), which is
compute-bound; a configuration that performs an extensive
analysis using different filtering criteria and computation in
two pipelined propositions, ttH_scinp (sci with new
pipeline propositions), which also behaves as compute-bound.

The scheduler performance on up-to-24 Xeon cores in clus-
ter node was compared with a sequential configuration of the
two compute-bound ¢t H versions with a static pipeline order,
defined by the user common sense. It showed superscalar
speedups (up to 39x), for every measured thread configuration
with ttH_scinp, as the parallel data setup and reordering
of the pipeline had a significant impact on performance. The
scheduler achieved a speedup of 16x for the ttH_sci, which
had an almost optimum pipeline order by default.

The scheduler performance on the same cluster node was
also compared with two conventional parallel approaches
to the same data analysis: (i) a sequential data setup with
multithreaded dataset processing (S+MT) and (ii) a multipro-
cess execution with two sets of parallel activities: the data
setup and the event processing (MP). It outperformed both
parallel implementations, with speedups up to 10x for the
ttH_scinp application, where the pipeline benefited the
most from reordering.

These performance outcomes were obtained against a set
of analyses that were already coded with a reasonable default
pipeline order. The scheduler in HEP-Frame has the potential
for higher performance improvements if the defined analysis
pipeline order is computationally unreasonable: it only re-
quires from the user the set of input files, the sequential code
for each proposition and the list of inter-dependencies among
the propositions. It then automatically manages the parallel
data setup and the propositions execution.

The feasibility of offloading suitable pipeline propositions
to manycore coprocessors is currently being evaluated. The
goal is to improve the scheduler to simultaneously process
propositions in the multicore CPU devices and in manycore
coprocessor devices. It is not expected that current manycore
coprocessors will outperform these computations faster than

multicore devices, but next generation of such devices are still
an opportunity that deserves our attention.

ACKNOWLEDGMENT

This work was supported by FCT (Fundag@o para a Ciéncia
e Tecnologia) within Project Scope (UID/CEC/00319/2013),
by LIP (Laboratério de Instrumentagdo e Fisica Experimental
de Particulas) and by Project Search-ON2 (NORTE-07-0162-
FEDER-000086), co-funded by the North Portugal Regional
Operational Programme (ON.2 - O Novo Norte), under the Na-
tional Strategic Reference Framework, through the European
Regional Development Fund.

REFERENCES

[11 A. Pereira, A. Onofre, and A. Proenga, “HEP-Frame: A Software
Engineered Framework to Aid the Development and Efficient Execution
of Scientific Code,” International Computational Science and Compu-
tational Intelligence — CSCI 2015, 2015.

[2] T. A. Collaboration, “The atlas experiment at the cern large hadron
collider,” Journal of Instrumentation, 2008.

[3] E. W. Weisstein, “Hamiltonian Path,” http://mathworld.wolfram.com/
HamiltonianPath.html.

[4] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer-Verlag
London, 2008.

[5] Intel, “Threading Building Blocks (Intel TBB) flow
graphs.” [Online]. Available: https://www.threadingbuildingblocks.org/
tutorial-intel- tbb- flow- graph

[6] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero, “Task superscalar: An out-of-order task
pipeline,” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’43.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 89-100.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2010.13

[7]1 O. A. R. Board, “Openmp Application Program Interface,” OpenMP
Architecture Review Board, Tech. Rep., 2013.

[8] Intel, “Intel xeon processor e5 v2 family: Datasheet,” Intel Corporation,
Tech. Rep., 2013.

[9] R.E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, 1st ed. Prentice Hall, 2003.

[10] Intel, “Intel VTune Amplifier XE 2016 and Intel VTune Amplifier 2016
for Systems Help,” Intel, Tech. Rep., 2016.

