
HEP-Frame: A Software Engineered Framework to
Aid the Development and Efficient Multicore

Execution of Scientific Code
Andre Pereira

Department of Informatics
LIP and University of Minho

Braga, Portugal
Email: ampereira@di.uminho.pt

Antonio Onofre
Department of Physics

LIP and University of Minho
Braga, Portugal

Email: Antonio.Onofre@cern.ch

Alberto Proenca
Department of Informatics

University of Minho
Braga, Portugal

Email: aproenca@di.uminho.pt

Abstract—This communication presents an evolutionary soft-
ware prototype of a user-centered Highly Efficient Pipelined
Framework, HEP-Frame, to aid the development of sustainable
parallel scientific code with a flexible pipeline structure. HEP-
Frame is the result of a tight collaboration between computational
scientists and software engineers: it aims to improve scientists
coding productivity, ensuring an efficient parallel execution on
a wide set of multicore systems, with both HPC and HTC
techniques. Current prototype complies with the requirements of
an actual scientific code, includes desirable sustainability features
and supports at compile time additional plugin interfaces for
other scientific fields. The porting and development productivity
was assessed and preliminary efficiency results are promising.

Index Terms—High Throughput Computing, Pipeline, Coding
Environment, Execution Efficiency.

I. INTRODUCTION

Computational sciences in the context of this work address
the resolution of complex science and technology problems
through the intensive use of computing resources. This inten-
sive use may address one or both targets: to shorten the time
to get a result, or to to obtain more results per time unit. The
former is known as high performance computing (HPC) while
the latter is commonly known as high throughput computing
(HTC). Scientific applications often include both needs.

A current societal requirement is sustainable computing,
which aims to minimize the cost of using intensive computing
now and in future generations. This goal compels computa-
tional scientists to give higher priority to the efficiency of
their scientific code on any computing platform, applying a
merge of HPC and HTC techniques without compromising
the accuracy and robustness of the software application. The
design of sustainable scientific code in any multicore platform,
either current or in the future, relies on a set of key features:
(i) knowledge of its science/engineering domain, (ii) clear
definition of the application requirements and (iii) adequate
design of sustainable software, both the algorithms and the
data structures, to be efficiently executed on a wide range of
HPC/HTC computing environments.

Common complex scientific applications are related to mod-
eling/simulation and quantitative data analysis and these often

rely on a set of pipelined tasks, where tasks execution may
depend on previous conditions and their execution order may
vary. These flexible pipelined applications can be described
through propositions in linear temporal logic with the structure
displayed in figure 1, where a proposition is a simple or
complex computational task applied to a dataset element and
an optional verification of a given criteria to decide if that
element is further processed or simply discarded.

Fig. 1. Structure of a typical flexible pipelined application.

A computational scientist is the best expert in the do-
main of her/his scientific field and has a clear understanding
of the software requirements under development. However,
she/he often has a limited knowledge of the updated methods
and techniques to develop sustainable parallel code, while
a software engineer may be an expert on software design,
clearly specifying the requirements of a sustainable software
application, but often hardly grasp the end user domain and
his view of the requirements may not match the scientist
view. A successful approach to the development of sustainable
scientific software requires an adequate bridge between the
science/engineering domain and the underlining computing



environments, a user-centered framework, developed through
a tight cooperation between a (computational) scientist and a
software engineer expert.

Some general purpose libraries and frameworks already aid
the development of parallel code on multicore systems. Li-
braries, such as those in OpenMP [1] or TBB (Intel Threading
Building Blocks) [2], address the workload distribution on
multicore systems but require computing expertise to handle
data consistency, avoid race conditions, and ensure the correct-
ness of the application, features that often lack in scientists.

Frameworks, such as StarPU [3] or Legion [4], dynamically
manage the workload distribution among computing units on
heterogeneous platforms with both multicore CPU and GPU
devices, but require applications to be rewritten according to
their restrictive specifications. They also require a high level
of expertise to take full advantage of the efficiency potential
of these frameworks, and scientists do not feel comfortable
with their learning curve.

A successful approach to the development of sustainable
scientific software requires an adequate bridge between the
science/engineering domain and the underlining computing
environments, a user-centered framework, developed through
a tight cooperation between a (computational) scientist and a
software engineer expert.

Pipelined applications typically have the structure presented
in figure 1. In the context of this work, a proposition is a
computational task, which is applied to a dataset element,
and an evaluation of a given dataset element characteristic
that may restrict the execution of subsequent propositions.
The tasks may be computationally simple or complex, and
the criteria may discard different amounts of dataset elements.
The work presented on this paper is also capable of addressing
performance issues of pipelined applications that do not have
the criteria component.

This communication address an evolutionary software pro-
totype of an Highly Efficient Pipelined Framework, HEP-
Frame, a user-centered framework to aid the development
of sustainable parallel scientific code with a flexible pipeline
structure. HEP-Frame aims to improve scientists coding pro-
ductivity and robustness, while ensuring an efficient parallel
execution of the resulting application on a wide set of mul-
ticore computing platforms. The design complies to the re-
quirements of an actual scientific code (an event data analysis
code in the search of the Higgs Boson, at LIP/CERN1), its
implementation includes the desirable sustainability features,
and it may be later refined. The framework supports at compile
time additional plugin interfaces for other specific scientific
fields, providing an easier and less error prone development
environment. The impact of porting and development produc-
tivity is briefly assessed, and the HPC/HTC efficiency results
of this prototype are presented and evaluated.

The communication is structured as follows: section II
introduces the design features of HEP-Frame and the current

1Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, LIP, is
an associated laboratory of the European Organization for Nuclear Research,
CERN, which operates the Large Hadron Collider particle accelerator.

prototype; section III presents an actual pipelined application
to evaluate the HEP-Frame; section IV discusses development
productivity issues complemented with performance porta-
bility analysis of the resulting multicore code; section V
concludes the communication with a critical analysis and
suggestions for future developments.

II. THE HEP-FRAME

Two main approaches to development frameworks are cur-
rently claiming to aid the design and deployment of scientific
code: a resource-centered approach, closer to the computing
platforms, stressing efficiency and performance portability, but
forcing the scientists to rewrite the existing code to adapt
it to their constraints, being the most relevance StarPU and
Legion; an alternative user-centered approach that stresses the
interface to domain experts to improve their productivity and
code robustness, at the same time including the desirable
sustainability features. The user-centered HEP-Frame aims to
motivate scientists to adopt a user-friendly framework that
dynamically addresses the efficiency concerns across different
types of parallel computing platforms.

This section presents the design of a user-centered frame-
work that automatically parallelizes scientific pipelined appli-
cations, bridging the gap between code execution efficiency
and development productivity. It provides a user-friendly inter-
face without requiring any specific tuning for each individual
scientific code or computing platform. Optimization efforts
focus on improving both the execution throughput of an input
dataset and the execution time of each element in the dataset,
in offline quantitative analyses. In its final development stage,
HEP-Frame will also address performance issues of compute,
memory and I/O bound applications, through techniques al-
ready present in its design. It can be later extended to process
continuous streams of online data and produce results in real-
time.

Subsection II-A presents the design of the HEP-Frame, in
terms of data structuring, user interface, programming model,
and optimization techniques. Subsection II-B discusses some
efficiency features. Subsection II-C introduces the current
evolutionary prototype of HEP-Frame with a set of already
implemented functionalities.

A. The Design

The framework design focus on the development and effi-
cient execution of compute and memory bound pipelined ap-
plications. It aids the code development, implementing several
application-specific features with an user-friendly interface. It
also automatically produces efficient code, tuned at runtime
for any computing platform, taking advantage of the code
structure and domain knowledge to optimize data processing
throughput, in a transparent way to the user. The structure of
the framework is presented in figure 2.

The framework operates at compile time, by the use of tools
to provide several abstractions to the developer and translate
those abstractions into working code, and at runtime, by imple-
menting several parallelization and optimization mechanisms



Fig. 2. HEP-Frame modular structure.

to dynamically deal with regular and irregular workloads. The
user is able to create a new application code skeleton through
the Pipelined Application Generator, with all the
files required for the propositions code, configuration, and
the data to be recorded per proposition. The Record Data
Parser automatically uses the latter file to create the required
code to store information for each dataset element specified by
the user. The dataset structure, specified by the user, is parsed
by the Data Structure Interface Generator to
create an interface to hide the complexities of the data structure
from the user, giving the illusion that the information of each
dataset element is stored on global memory. The Specific
Field Interface is a tool that can be integrated with the
framework and can ease the scientists development environ-
ment by providing specific functionalities or by automatically
creating the dataset structure.

The Framework Core encapsulates all functionalities re-
quired to develop the application and efficiently execute the
code. At this stage, the user codes the propositions as func-
tions, considering that they do not receive any inputs and return
a boolean (true if the criteria is met and false otherwise), and
submits them to the framework. When executing the code,
the framework loads the data from the input file to memory,
initialises timers, performs initial parallelism configurations,
and applies the user coded propositions to the each dataset
element. This execution flow is presented in figure 3.

B. Efficiency Features

To embed efficiency features in the final code that the
framework generates, some key approaches must be followed,
including (i) removal of algorithmic and data structures in-
efficiencies, (ii) taking advantage of the underlying parallel
hardware and (iii) adequate ordering of the pipeline tasks
(propositions). The former was already addressed on a dis-
cussion of an actual particle physics pipelined application [5]
and the automatic removal of most reported inefficiencies will
be later included in HEP-Frame.

Two main types of parallelization techniques can be ap-
plied in an application: process intra-dataset elements, which
will favour HPC, or process inter-dataset elements, to favour

Fig. 3. HEP-Frame execution flow.

HTC code. Intra-dataset element optimizations are oriented
to complex processing of each dataset element, which can
be identified and optimized, namely in multicore CPUs or
offloaded to accelerator devices, such as the Intel Xeon Phi or
NVidia GPUs. Inter-dataset element parallelism may be easier
to implement; the absence of dependencies among dataset
elements makes this an embarrassingly parallel problem and
if the code has little dependencies on external libraries the
dataset element processing can be offloaded to accelerator
devices. When the required performance of an application
requires both HPC and HTC optimizations, a balance between
both approaches requires careful study, as discussed ahead.

A flexible pipeline is described in linear temporal logic
as a formula FGP1 ^ FGP2 ^ ... ^ FGPn, where each
proposition Pi is a task in the pipeline, F assumes that a
proposition will eventually be true in the future, and G states
that it will always hold its truth value. Propositions may
have dependencies among them, declared by the user in the
framework, which must be respected. If P2 depends on P1 the
formula changes to FGPn^...^FG(P1^FGP2). This formula
states that the propositions can be executed in any order (the
conjunction is commutative), as long as P2 is executed after
P1. An element from the dataset D has to fulfil the formula
Di |= FGPni ^ ... ^ FG(P1i ^ FGP2i) to pass all tasks in
the pipeline.

In the pipeline flow, the propositions execution order might
have a context to the user, but it may not be the most efficient
from the computational point of view. Propositions with a high
failure probability of the filtering criteria should be placed in
an early stage, while propositions with high execution time
might be best placed later in the pipeline flow. This reordering
of the propositions should be performed dynamically during
the application execution, as the filtering ratio and execution
times are not known at compile time and might vary during
the dataset processing.

The proposition reorder mechanism measures each proposi-
tion execution time and filtering ratio between specified check-
points. An ordering weight is attributed to each proposition
based on the filtering ratio, the execution time and the position



in the pipeline flow, which is stored in an array. A simplified
starting approach does not account the proposition place in
the pipeline flow, hence the weights are stored in a matrix.
The best proposition order is obtained by finding the path that
passes through all propositions in the matrix, without returning
to the initial position, known as the directional Hamiltonian
path [6]: a path that visits each vertex of a graph exactly
once, an NP-complete problem. The weights for each new
checkpoint consider the best placement of propositions in
the pipeline flow after being reordered, converging to a near
optimal solution.

C. The Prototype

A preliminary prototype of the framework was developed,
and it is currently being used by a research group on particle
physics, which focused on implementing the features required
to aid the development of pipeline code, by providing a
user-friendly interface. Some code optimizations were also
implemented and are discussed later in this section. From
the framework modules presented in subsection II-A, only
the integration with automatic parallelization frameworks for
heterogeneous system was not performed.

The Pipelined Application Generator tool creates a sample
code skeleton based on an application name provided by
the scientist and an input file. This code skeleton contains
the constructor of the main class, the basic input parameters
reading (input event file and output file name for the variables
recorded), a proposition function prototype, and the main
function. It also creates a second file where the user will later
define the dataset element variables to record per proposition.
The Record Variable Parser parses this file to check if the
variables exist in the dataset structure. The scientist only has to
write the variable name inside the specified section of the file.
The tool creates the required code to store the information, and
supports scalars, array elements or entire arrays of any type. It
is also possible to specify simple arithmetic operations, such
as a[0] * a[1] - b, where the expression is computed
and then stored in a data structure with the appropriate type
to avoid losing numeric precision. An interface for high
energy particle physics was developed, which provides a set
of functionalities, interaction with specific libraries, and an
automatic data structure creation based on a given input file
for the application.

The Framework Core implements an execution flow where
the data is loaded into a specific structure and processed.
It is planned to later implement a stream-like flow, where
the dataset elements are being loaded simultaneously to the
processing of other events, and at that stage a more suitable
data structure will be used. The propositions function pointers
are stored into an array and are executed in their original order
by the loop method. These details are hidden from the user.

Inter-dataset elements parallelization was adopted in a first
stage, using OpenMP to manage the threads among the cores
of the CPUs. Due to the irregular nature of this domain, a
dynamic scheduler was used to perform the load balancing
among threads. The data to be saved for each proposition

is stored locally to each thread, and is merged after the
processing of the entire dataset to minimize synchronizations.
Intra-dataset elements can be performed by either parallelizing
the execution of a complex proposition or executing multiple
propositions simultaneously. The former requires data struc-
tures to be created dynamically to store intermediate results,
thus applying the same proposition simultaneously to multiple
dataset elements, and the latter may not provide performance
improvements, as most propositions execution time is very
small and the overhead would restrict the performance. This
two alternatives will be addressed in later evolutions of the
HEP-Frame prototype.

HEP-Frame implements a backtracking algorithm, whose
flow is presented in figure 4, to obtain the best proposition
order with the simplified design presented in subsection II-A.
The paths where proposition dependencies are violated are
interpreted with an infinite cost. The user has the option to
save the best proposition order to be later loaded as an initial
order for other executions of the application.

Fig. 4. Proposition reorder backtracking algorithm.

III. AN ACTUAL CODE TO EVALUATE HEP-FRAME

An actual pipelined scientific code was selected to assess
the HEP-Frame as a development aid and to evaluate its
performance portability: a particle physics event data analysis
after a proton beam collision at CERN, the ttH_dilep
application [5]. Following the discovery of the Higgs boson
at CERN, one of the searches conducted at the LHC is the
study of the associated production of top quarks together with
Higgs bosons (tt̄H) [7]. This search has been carried on by
both ATLAS [8] and CMS [9] at the LHC and it is of crucial
importance to understand the couplings of the top quarks to the
Higgs boson. Figure 5 represents the final state topology of a
proton beam collision for the tt̄H production. The experiments
can record the characteristics of the bottom quarks (detected as
a jet of particles) and the two leptons (muon or electron), but



not the neutrinos, since these do not interact with the detector.
However, the top quark reconstruction requires the neutrinos,
so their characteristics are analytically determined with the
known information of the system, through a kinematical
reconstruction.

Fig. 5. Schematic representation of the tt̄ system and Higgs boson decay.

The ttH_dilep was developed to perform this analysis
and has 18 stages to filter out the measured results that do
not comply with the expectations (here referred to as propo-
sitions), with the kinematical reconstruction being the most
computationally intensive. To further improve the accuracy
of this reconstruction, the detector experimental resolution
(±1%) was considered during the computation, through 1024
random variations of the measured data with its magnitude.
From all variations within an event, only the one that best fits
the theoretical model is chosen, improving the final analysis
quality.

IV. RESULTS AND DISCUSSION

The porting of a real case study (the ttH_dilep described
in section III) into the proof of concept framework did not
involve the computational scientist, but the prototype was
reviewed and assessed by the scientist as an end-user, who
ported his 4-year legacy code into the HEP-Frame in just
4 hours, after a 15 minute crash-course, without requiring
substantial changes to the original code. The full functional
framework will not require a learning curve longer than half an
hour and provides relevant development aids, namely creation
of data structures and their access, based on the input data file,
automatic generation of domain specify functions, including
file reading/writing and common statistical operations, and
a guarantee of functional (and efficiency) portability of the
supplied code across different computing platforms, in time
and space. The code of a pipelined application can easily be
modified at each computational task or at the filtering criteria
at each proposition.

An optimized parallel implementation of the pipelined ap-
plication used as case study, previously described in [5], com-
bines both HPC and HTC approaches. The former improves
the performance of a single event (in this context an event is

the processing of a single dataset element), by parallelizing
the execution of the heaviest propositions, while the latter
improves the event throughput with multiple simultaneous ex-
ecution of events. The results shown in figure 6 combine both
HTC and HPC approaches, and show that it is more efficient
to explore an HTC approach versus HPC, although the best
efficiency results will need both approaches. It is also shown
that hardware multithreading on CPU devices only improves
the performance if both approaches are used simultaneously.
Therefore, the initial HEP-Frame prototype mainly addresses
the HTC approach, with promising performance results, and
will soon be improved by implementing HPC features and
other tested optimizations described in [5].

Fig. 6. Speedup for an hybrid multiprocess/multithread custom parallelization
of ttH_dilep on a dual socket system with 10-core Intel Xeon E5-2670v2.

The performance portability of HEP-Frame was studied on
different dual-socket computing nodes. The execution times of
the original sequential ttH_dilep and the version ported to
HEP-Frame are presented in table I. The K-best measurement
scheme was adopted [10], with K set to 5 and a 5% tolerance,
to ensure that only the best, but consistent, time measurements
are considered. The number of threads is automatically set by
the framework to the number of physical cores in both CPU
devices, without any tuning by the user.

TABLE I
EXECUTION TIMES OF THE SEQUENTIAL AND PARALLEL TTH_DILEP

WITH HEP-FRAME.

Intel Xeon E5520 X5650 E5-2650v2 E5-2670v2 E5-2695v2
µArchitecture Nehalem Nehalem Ivy Bridge Ivy Bridge Ivy Bridge
#Cores 2 x 4 2 x 6 2 x 8 2 x 10 2 x 12
Clock Freq. 2.27 GHz 2.67 GHz 2.6 GHz 2.5 GHz 2.4 GHz
Sequential
Exec. Time (s) 215 196 175 180 183

Parallel
Exec. Time (s) 45 30 23 22 23

The HTC parallelization approach in HEP-Frame improves
the event throughput up to 8 times on a dual 10-core system
(20 events), when compared to the sequential version (figure
7). This improvement still lies considerable short when com-
pared with the version without HEP-Frame (figure 6, 50 times
faster with 10 events with 2 threads/event). This is due to
the sequential nature of the different implementations of the
I/O operations (these are still sequential operations in current



TABLE II
CHARACTERIZATION OF THE 18 TTH_DILEP propositions.

Execution Time (ns) Dataset Elements that Pass
1 : ⇠ 108 1 : ⇠ 50%
1 : ⇠ 106 1 : ⇠ 63%
1 : ⇠ 104 1 : ⇠ 94%

2 : ⇠ 5 ⇤ 103 15 : >99%
13 : <103 -

HEP-Frame prototype) and the merge of results at the end
was not accounted in the version without HEP-Frame. The use
of simultaneous multithread at each core may also be worth
considering later. The use of hardware accelerators to improve
the performance of specific propositions is being studied, with
the adoption of specialized frameworks, such as Legion, to
manage irregular load balancing. The goal is to identify at
compile time propositions whose code is suitable to execute
on such devices, and at runtime offload only the ones that
require intensive computing.

Fig. 7. Event throughput and CPU efficiency with HEP-Frame.

The properties of the propositions in the actual code used
as case study does not show the potential of the propositions
reorder mechanism: the range of the propositions execution
time is too large (6 orders of magnitude) and they do not filter
a substantial amount of dataset elements, as shown in table II.
However, for datasets that require more than 100 reorders the
performance already improves by more than 70%.

V. CONCLUSIONS

This communication describes HEP-Frame, a user-centered
framework that aids scientists to improve coding productivity,
while ensuring efficient parallel execution of the application
on various computing platforms, in a way transparent to the
end-user. A particle physics event data analysis was used as an
actual case study, due to its suitable computational features.
HEP-Frame enables scientific code to be easier maintained
(write once, efficiently runs forever) while supporting the
development of more complex algorithms to improve the
analysis accuracy due with a better data processing throughput.

The coding productivity of HEP-Frame was assessed by
measuring the time of porting an event analysis application
to the framework by its physicist developer. The expected
learning curve of the final version of the framework will
take no longer than 30 minutes. The performance of the

case study was improved by up to 8x in a dual socket
system, without parallelization of heavy I/O functions. Results
also sowed that HEP-Frame ports the efficiency of pipelined
applications on different computing platforms. Parallelization
inefficiencies were already identified on the original code,
namely on the concurrent access to the data structure and
at the merge of the final results of each thread, and will be
addressed in future version of the framework. The feasibility of
automatic offloading of computationally intensive propositions
to hardware accelerators is currently being assessed.

The proposition reorder mechanism applied to an adverse
case study showed a performance improvement of 70% over
the original pipeline flow. The implemented mechanism con-
verges to a near optimum solution and can be further im-
proved.

The best performance of pipelined applications is achieved
through hybrid HPC/HTC approaches, as preliminary results
showed in [5]. Further research is required to evaluate how this
two types of parallelization techniques interact and to search
for an heuristic to be used in different pipelined applications.
A preliminary automatic hybrid parallelization mechanism is
expected in the next version of HEP-Frame, together with
the inclusion of heterogeneous computing capabilities (with
accelerators).

ACKNOWLEDGMENT

This work was supported by FCT (Fundação para a Ciência
e Tecnologia) within Project Scope (UID/CEC/00319/2013),
by LIP (Laboratório de Instrumentação e Fı́sica Experimental
de Partı́culas) and by Project Search-ON2 (NORTE-07-0162-
FEDER-000086), co-funded by the North Portugal Regional
Operational Programme (ON.2 - O Novo Norte), under the Na-
tional Strategic Reference Framework, through the European
Regional Development Fund.

REFERENCES

[1] OpenMP Architecture Review Board, “Openmp Application Program
Interface,” OpenMP Architecture Review Board, Tech. Rep., 2013.

[2] Intel Corporation, “Threading Building Blocks (Intel TBB).” [Online].
Available: https://www.threadingbuildingblocks.org/

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” Concurr. Comput. : Pract. Exper., vol. 23, no. 2, pp.
187–198, February 2011.

[4] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
Locality and Independence with Logical Regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, 2012.

[5] A. Pereira, A. Onofre, and A. Proença, “Removing Inefficiencies from
Scientific Code: The Study of the Higgs Boson Couplings to Top
Quarks,” Computational Science and Its Applications – ICCSA 2014,
2014.

[6] E. W. Weisstein, “Hamiltonian Path,” http://mathworld.wolfram.com/
HamiltonianPath.html.

[7] ATLAS Collaboration, “Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at the LHC,”
Phys.Lett., 2012.

[8] T. A. Collaboration, “The atlas experiment at the cern large hadron
collider,” Journal of Instrumentation, 2008.

[9] The CMS Collaboration, “The CMS experiment at the CERN LHC,”
Journal of Instrumentation, 2008.

[10] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, 1st ed. Prentice Hall, 2003.


