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ARTICLE INFO ABSTRACT

Article history: Software to analyse very large sets of experimental data often relies on a pipeline of irregular
Received 28 October 2019 computational tasks with decisions to remove irrelevant data from further processing. A user-centred
Received in revised form 7 December 2020 framework was designed and deployed, HEP-Frame, which aids domain experts to develop applications
Accepted 18 January 2021 for scientific data analyses and to monitor and control their efficient execution. The key feature of HEP-
Available online 28 January 2021 Frame is the performance portability of the code across different heterogeneous platforms, due to a
Keywords: novel adaptive multi-layer scheduler, seamlessly integrated into the tool, an approach not available in
Computational physics competing frameworks.

Data analysis The multi-layer scheduler transparently allocates parallel data/tasks across the available heteroge-
Pipeline reorder neous resources, dynamically balances threads among data input and computational tasks, adaptively
Stream computiﬂg reorders in run-time the parallel execution of the pipeline stages for each data stream, respecting data
Scientific computing dependencies, and efficiently manages the execution of library functions in accelerators. Each layer

Heterogeneous computing

. f implements a specific scheduling strategy: one balances the execution of the computational stages of
High performance computing

the pipeline, distributing the execution of the stages of the same or different dataset elements among
the available computing threads; another controls the order of the pipeline stages execution, so that
most data is filtered out earlier and later stages execute the computationally heavy tasks; yet another
adaptively balances the automatically created threads among data input and the computational tasks,
taking into account the requirements of each application.

Simulated data analyses from sensors in the ATLAS Experiment at CERN evaluated the scheduler
efficiency, on dual multicore Xeon servers with and without accelerators, and on servers with the
many-core Intel KNL. Experimental results show significant improved performance of these data
analyses due to HEP-Frame features and the codes scaled well on multiple servers. Results also show
the improved HEP-Frame scheduler performance over the key competitor, the HEFT list scheduler.

The best overall performance improvement over a real fine tuned sequential data analysis was
impressive in both homogeneous and heterogeneous multicore servers and in many-core servers: 81x
faster in the homogeneous 24+24 core Skylake server, 86x faster in the heterogeneous 12+12 core Ivy
Bridge server with the Kepler GPU, and 252x faster in the 64-core KNL server.

Program summary

Program Title: HEP-Frame

CPC Library link to program files: https:[/doi.org/10.17632/m2jwxshtfz.1

Licencing provisions: GPLv3

Programming language: C++.

Supplementary material: The current HEP-Frame public release available at https://bitbucket.org/
ampereira/hep-frame/wiki/Home.

Nature of problem: Scientific data analysis applications are often developed to process large amounts
of data obtained through experimental measurements or Monte Carlo simulations, aiming to identify
patterns in the data or to test and/or validate theories. These large inputs are usually processed by a
pipeline of computational tasks that may filter out irrelevant data (a task and its filter is addressed as
a proposition in this communication), preventing it from being processed by subsequent tasks in the
pipeline.
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This data filtering, coupled with the fact that propositions may have different computational

intensities, contribute to the irregularity of the pipeline execution. This can lead to scientific data
analyses [/O-, memory-, or compute-bound performance limitations, depending on the implemented
algorithms and input data. To allow scientists to process more data with more accurate results their
code and data structures should be optimized for the computing resources they can access. Since the
main goal of most scientists is to obtain results relevant to their scientific fields, often within strict
deadlines, optimizing the performance of their applications is very time consuming and is usually
overlooked. Scientists require a software framework to aid the design and development of efficient
applications and to control their parallel execution on distinct computing platforms.
Solution method: This work proposes HEP-Frame, a framework to aid the development and efficient
execution of pipelined scientific analysis applications on homogeneous and heterogeneous servers.
HEP-Frame is a user-centred framework to aid scientists to develop applications to analyse data from
a large number of dataset elements, with a flexible pipeline of propositions. It not only stresses the
interface to domain experts so that code is more robust and is developed faster, but it also aims
high-performance portability across different types of parallel computing platforms and desirable
sustainability features. This framework aims to provide efficient parallel code execution without
requiring user expertise in parallel computing.

Frameworks to aid the design and deployment of scientific code usually fall into two categories:
(i) resource-centred, closer to the computing platforms, where execution efficiency and performance
portability are the main goals, but forces developers to adapt their code to strict framework con-
straints; (ii) user-centred, which stresses the interface to domain experts to improve their code
development speed and robustness, aiming to provide desirable sustainability features but disregarding
the execution performance. There are also a set of frameworks that merge these two categories
(Liu et al,, 2015 [1]; Deelman et al, 2015 [2]) for scientific computing. While they do not have
steep learning curves, concessions have to be made to their ease of use to allow for their broader
scope of targeted applications. HEP-Frame attempts to merge this gap, placing itself between a
fully user- or resource-centred framework, so that users develop code quickly and do not have to
worry about the computational efficiency of the code It handles (i) by ensuring efficient execution of
applications according to their computational requirements and the available resources on the server
through a multi-layer scheduler, while (ii) is addressed by automatically generating code skeletons
and transparently managing the data structure and automating repetitive tasks.

Additional comments: An early stage proof-of-concept was published in a conference proceedings
(Pereira et al., 2015). However, the HEP-Frame version presented in this communication only shares
a very small portion of the code related to the skeleton generation (less than 5% of the overall
code), while the rest of the user interface, multi-layer scheduler, and parallelization strategies were

completely redesigned and re-implemented.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

middle of the pipeline sequence when they do not comply to a
given constraint; this performance tuning stressed the reordering
of non-dependent pipeline tasks to apply first those tests that

Scientists often develop software to analyse very large sets discard more data and to delay those tasks more computationally

of experimental data, in a continuous stream of n-tuples, aiming
to monitor, test and/or prove hypotheses and theories. Most
scientific analyses apply a set of pipelined tasks (typically > 10)
on independent datasets.

Pipeline stages in scientific analyses typically have inter-
dependencies and irregular execution times: several are compu-
tationally intensive and most filter out irrelevant data elements
from further processing. Independent filtering stages can also be
commutative. The execution order of the pipeline stages may sig-
nificantly impact its efficiency, as their individual filtering rates
and execution times are different and may change in run-time.

The development and deployment of efficient data analyses
on different computing platforms is a highly demanding task for
most scientists — due to the complexities of balanced parallel
computing on homogeneous and heterogeneous servers — and
may have a significant impact on the research productivity of
domain experts, since most analyses take a long time to execute.

A new user-centred tool was designed to aid the development
of these analyses and to provide an efficient execution engine, the
Highly Efficient Pipeline Framework, HEP-Frame.

Previous work addressed three issues related to the design
and construction of the HEP-Frame prototype: (i) the specifi-
cation and development of the prototype and its validation by
domain experts [3]; (ii) the performance tuning of pipelined
scientific data analyses, where events can be discarded in the

intensive [4]; and (iii) the use of a multi-buffer approach to
speedup the generation of large sets of pseudo-random numbers
(PRN), a feature required by most scientific data analyses, using
a GPU accelerator [5].

This paper provides a detailed overview and evaluation of an
upgraded and fully functional HEP-Frame tool! where the domain
expert supplies the tasks code and their inter-dependencies, the
datasets files and the type and size of the compute server(s);
the execution engine automatically reads the data from input
streams, builds an adequate data structure, to improve data lo-
cality, and runs its key components, a tasks library and the
multi-layer scheduler that manages the code execution on a
single or multiple compute servers.

The key scientific contribution of the work being reported here
is the orchestration of a multi-layer scheduler that adaptively
balances the workload of a large set of pipelined scientific analy-
ses on homogeneous/heterogeneous multicore/manycore servers.
This scheduler extended the performance improvements of the
previous proof-of-concept prototype of HEP-Frame and led to a
stable version of the framework, which became a self-contained,
integrated, and fully functional tool. This tool was thoroughly val-
idated by domain experts and is currently being used by several
high energy physics researchers.

1 Available at https://bitbucket.org/ampereira/hep-frame/wiki/Home.
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Three variants of an actual case study were selected to test
and evaluate HEP-Frame on single and multiple heterogeneous
compute servers: one memory-bound and two compute-bound
versions, one of them requiring a large amount of PRNs. The
case study is an application from high energy physics, the ttH
analysis, where simulated data collected from sensors at the
ATLAS Experiment (at CERN) were analysed to prove a theory:
the Higgs boson production.

Section 2 gives an overview of the HEP-Frame, from the
general structure of pipelined data analyses to a comparative
analysis with competing frameworks. Section 3 details the multi-
layer scheduler and how it exploits the pipeline parallelism,
discussing the related work. Section 4 describes the three vari-
ants of a real cased study to test and validate the framework.
Section 5 evaluates the overall performance of the HEP-Frame
scheduler on different heterogeneous compute servers, discussing
the measured results. Section 6 presents a critical analysis of
the developed work with suggestions to extend the framework
features.

2. Highly efficient pipeline framework

HEP-Frame is a user-centred framework that aims high-
performance portability across different types of parallel comput-
ing platforms. It provides automatically generated code skeletons,
transparently manages the data structure, and manages the ef-
ficient execution of the code through a multi-layer scheduler.
Often, non-computer scientists store the data element being pro-
cessed in global memory, replacing it with the next element once
the current processing is finished. HEP-Frame keeps this illusion -
the user code can access the data element being processed as if it
was in global memory - while the framework stores multiple data
elements in adequate data structures, transparently to the user.
This approach provides a familiar coding environment, ensures
that existing code can be easily ported into HEP-Frame, and hides
the unnecessary complexity of interacting with specialized data
structures.

The extended scheduler version includes the following fea-
tures:

e it balances the loading and pre-processing of raw data into
HEP-Frame data structures (the data setup) in parallel with
the pipeline execution, through a dynamic adaptation of
the number of threads assigned to read and to process the
pipelined data stream;

e it adaptively reorders the pipeline execution flow and the
tasks distribution across heterogeneous computing
resources, exploiting parallel execution of independent
pipeline stages (task parallelism) with multiple dataset el-
ements/input streams (data parallelism);

e it balances the data and workloads distribution on a het-
erogeneous multicore server with accelerators, such as the
manycore co-processor Intel Xeon Phi Knights Corner (KNC)
or GPU devices, and on multiple multicore and/or manycore
servers (with Xeon Phi Knights Landing, KNL).

Users have control of their code, which is not modified by
the framework, and specify the dependencies among the pipeline
stages, so that the HEP-Frame scheduler ensures the application
correctness during its parallel execution.

Next subsections address the structure of a typical flexible
pipelined scientific data analysis, the HEP-Frame usability (the
skeleton generator and associated pipeline inter-dependencies,
the data structure setup, plug-ins to store results), and a com-
parative analysis of the framework competitors.
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2.1. Flexible pipelined data stream analyses

A scientific data analysis is a process that converts raw data
(often from experimental measurements) into useful information
to monitor data, test hypotheses or prove theories. Large amounts
of experimental data are read in variable sized chunks or datasets,
and placed into an adequate data structure.

HEP-Frame supports three modes to input data into the
pipeline: batch or mini-batch from files, and streaming from
external sources.

The batch input loads and pre-processes a pre-defined batch
of data (usually an input data file) before this chunk is available to
be processed by the application pipeline. This is the strategy most
commonly used in scientific computing, where the data from a
whole file is read and prepared before being processed, but it
means that concurrent input reading, which often requires an
initial data setup phase (input reading and setup are addressed
as DS), and the processing of the data (data processing phase is
addressed as DP) only makes sense with multiple batches.

The mini-batch input loads and pre-processes each data tuple,
or a small set of tuples, individually from an input batch: data
is available earlier to be processed by the application pipeline.
By definition, a batch or mini-batch entails the loading of a set
of information, which cannot be processed before its DS phase
is finished. If an input file can be divided into mini-batches,
it is possible to start processing data from a file, or multiple
files, before the whole file is read, so DS and DP tasks can be
concurrently processed for each data tuple.

Streaming continuously loads data tuples from a given input
descriptor, similarly to mini-batch, until it is signalled to stop. The
DS and DP tasks can be simultaneously executed, but this requires
careful memory management to avoid exceeding the size of the
available physical memory.

Each dataset element, typically a n-tuple of measured data
with no dependencies among different n-tuples, is submitted to a
pipeline of propositions. In this work a proposition is considered
as a computational task that may be followed by an evaluation of
a criterion to decide if the dataset element is discarded or further
processed by the next proposition. Fig. 1 shows the flowchart of
a typical structure.

Scientific data analyses usually have irregular workloads: the
pipeline processing time for each dataset element is variable as
it may be discarded by a proposition at any pipeline stage. The
execution time of each individual proposition also depends on
the computational task, whose complexity may vary according to
different dataset properties, and/or on memory access penalties,
if the code is more memory-bound than compute-bound. The
HEP-Frame scheduler dynamically employs different techniques
to get the best performance of both memory and compute bound
irregular workloads.

The default order of the pipelined propositions, as defined
by the domain expert when developing the application, is not
guaranteed to be the most efficient, as propositions with long
execution times might be placed earlier in the pipeline, while
propositions that filter out more dataset elements might be ex-
ecuted in later stages. Possible execution orders of propositions,
which respect their dependencies, can only be represented as a
directed cyclic graph. A formalization of a method to structure
the pipeline order execution for maximum efficiency is described
in depth in [3].

Several scientific fields require pipelined applications struc-
tured as detailed above: particle physics data analyses, which
mostly filter and process data measured from sensors; cosmology
analyses, where it is often required to find objects with cer-
tain characteristics, discarding most of the gathered data; and
optimizing queries on databases and data streams.
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Fig. 1. Structure of a typical flexible pipelined scientific data analysis.

2.2. HEP-frame usability

The HEP-Frame run-time system handles all repetitive tasks
usually performed during an analysis code execution, while re-
quiring the user to provide code snippets to fill the remaining
gaps, as shown in Fig. 2.

HEP-Frame provides a toolset with scripts for the develop-
ment and compilation of pipelined scientific code. Four tools
are available in the current version of HEP-Frame: skeleton_
generator, class_generator, record_parser and inter-
face_generator. The HEP-Frame can also include tools to
automatically and transparently create the load/store code for a
specific case study (the green boxes in Fig. 2). Additional tools can
be coded and added by the domain expert, like plugins, so that
other specific needs of their pipelined skeleton can be addressed.

The skeleton_generator tool creates a skeleton with func-
tion prototypes for the user to fill in with the required code
to run the application, such as propositions and their inter-
dependencies, dataset file loading, dataset element class struc-
ture, and result storage.

Domain experts code their analysis stages in the propositions,
which HEP-Frame will manage as black boxes without modifying
the code, to ensure that users trust its correctness and have total
control of the code. This also allows their code to be easily up-
dated and expanded, while working out-of-the-box with updated
versions of HEP-Frame. Users can also organize their propositions
and auxiliary functions in multiple source files, as HEP-Frame will
automatically detect and compile them.

Users must add the propositions to the analysis in the main
function in the skeleton file, by calling a method that receives
the proposition function pointer and a user-defined proposition
name. The order by which the propositions are added will be used
as the initial pipeline order.

Users define the dependencies between propositions through
a method that indicates that a given proposition depends on
another one. The HEP-Frame scheduler balances proposition ex-
ecution without compromising the correctness of the results,
based on these user-defined dependencies. Partial and final re-
sults can also be stored: the user provides the code in a specific
function on the skeleton file.

The class_generator automatically creates the dataset
structure and the code to load the data from an input data file.
This tool is automatically called when a domain expert creates a
new analysis with HEP-Frame.

Users specify the dataset element variables to be stored, for
the elements that pass each proposition or the whole pipeline,
by indicating their name on a specific section of the skeleton
file. The code to store these variables for each dataset element
is transparently created by the record_parser tool when the
user compiles the analysis.

The interface_generator creates an interface at compile
time to access the HEP-Frame internal data structure, improving
coding productivity. The propositions access each dataset element
as it is stored in global memory.

A proposition receives only a counter parameter as input,
managed by HEP-Frame, and returns a Boolean to indicate if

the current dataset element passes to the next proposition or is
filtered out. For instance,

bool propl (unsigned this_event_counter) {
if (vall > val2)
return true;
else
return false;

}

int main (void) {

//o...
analysis.addProposition (propl, "propl");
analysis.run();

/1

vall and val2 are variables of a dataset element, which can
be accessed as if they are declared in global memory. The inter-
face_generator translates the access to these variables into
accesses to the HEP-Frame data structure that holds all dataset
elements. This proposition will be applied to all dataset elements,
according to the scheduler assessment, similarly to kernels in
CUDA.

2.3. Competing frameworks

HEP-Frame has a two-fold goal of (i) being a user-centred
framework to aid the development of scientific code and (ii)
managing the efficient execution of the code on multicore and
manycore servers. Several popular and widespread frameworks
aim to aid the development of parallel code, but few address the
domain-experts usability requirements, and even fewer address
the transparent performance portability across different servers.
Flink [6], Storm [7], and Spark [8] loosely fit in this category, but
they do not meet the expectations of domain experts, and do not
allow for the level of control that HEP-Frame has over this specific
type of scientific applications.

Very few frameworks address transparent performance porta-
bility and at the same time are oriented to domain experts, par-
ticularly non-computer scientists [1]. StarPU [9] and Legion [10]
are the closest frameworks to HEP-Frame: both target the devel-
opment of efficient code for heterogeneous platforms, schedule
data and task processing among threads and support efficient
execution of irregular tasks. However, these tools were designed
for advanced programmers and lack support for flexible pipelines,
namely those that may discard dataset elements in intermediate
pipeline stages.

StarPU provides a refinement of this strategy by using task
priority information to select which task to process among all
tasks in a ready queue. However, since each task priority must be
defined and updated by the user during the application execution,
this requires that the user must have a comprehensive knowledge
of the problem, to define an adequate heuristic for an efficient
application code execution.

Legion focuses on proper structuring and efficient placement
of the data on the complex memory hierarchies of heterogeneous
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Fig. 2. Execution flow with the HEP-Frame: the user provides code for the darker boxes (orange and green) and the framework run-time system manages the blue
boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

servers. Users specify properties of data structures, such as par-
titioning strategies and coherence, which allow it to implicitly
extract parallelism and manage data. Legion allows user defined
mapping of both tasks and data to specific computing devices,
while respecting the properties of the datasets. However, this tool
uses generic schedulers for irregular tasks (that can be extended
by the user), which may not be suited for every type of appli-
cations. Applications with simple data dependencies or heavily
compute-bound are not the focus of Legion.

Other simpler tools are available to specific balance the work-
load of irregular pipelined code, but do not provide multiple
scheduling options and other features that are provided by StarPU
and Legion, and they also lack support for flexible pipelines, such
as Pegasus [2]. OmpSs [11] and DAGUE [12] are the alternative
tools that may be best suited for pipelined scientific code.

OmpSs is a pragma based programming model that extends
OpenMP [13] to support asynchronous parallelism and offload
to accelerator devices, which allows easy integration in existing
codes by users with some experience in parallel programming. It
is based on a task clause that defines the parallel region, in which
data dependencies and transfers to and from accelerator devices
are specified. It supports OpenCL and CUDA capable devices, as
well as the Intel KNC co-processor. However, OmpSs is limited
as its parallelization needs to be tailored for the user code and
requires the tasks to be compatible with the accelerator devices,
which is often not the case, in addition to other limitations in
scheduling common to other pragma based programming models.

DAGUE is a run-time system that dynamically manages the ex-
ecution of tasks, which are represented by directed acyclic graphs,
on multicore devices. It relies on knowledge of the application
obtained in a pre-compilation process, such as task dependen-
cies and ordering; its workload scheduling is based on a work
stealing strategy. However, flexible pipelined data analyses tasks
can only be represented by directed cyclic graphs, as described in
Section 4.

A data processing framework that aims to ease the develop-
ment of physics scientific data analyses is ROOT [14]: it is used by
a wide scientific community, namely at CERN, and it provides an
extensive set of features for I/O, physics, statistical analysis tools,
and even application skeleton generators. However, the perfor-
mance of these features was not the priority of ROOT developers,
which leads to significant bottlenecks in code execution [15].

The two types of competing frameworks presented, StarPU/Le-
gion and ROOT, stand in opposite ends: the former is performance
oriented with a steep learning curve for non-computer scientists,
while the latter is feature oriented and easy to use, but compu-
tationally inefficient. Performance oriented frameworks usually
have steep learning curves, while feature oriented frameworks
are easier to use but often computationally inefficient.

While the original case studies were sequential and heavily
based on ROOT, the performance improvements presented in this
communication are speedups over improved and multithreaded
versions of the case studies, which are also less dependent on
ROOT (see [15] for a comparison of the original case studies).

To develop an application with StarPU is a hard task for
domain experts: StarPU imposes several coding restrictions and
offers a large set of configuration options that are not clear
for non-computer scientists. All published papers that describe
applications developed with StarPU were written by computer
scientists. However, StarPU can generate efficient code through a
variant of an adequate scheduling approach, which will be used
in this paper as the reference scheduler to show the efficiency
improvements of HEP-Frame. The case studies used to evaluate
the HEP-Frame performance were not ported into StarPU by
their original particle physicists developers, as they lacked the
expertise and time to perform an adequate implementation.

In between these two types of competing frameworks lies
HEP-Frame, user-centred to be easily adopted by non-computer
scientists: it includes the relevant functionalities of ROOT and
at the same time it efficiently uses the available computing re-
sources.

3. The multi-layer scheduler

A proof-of-concept single-layer scheduler for compute-bound
pipelined scientific data analyses was developed for multicore
environments, to assess the feasibility of the proposed novel
scheduling strategy [4].

This scheduler was extended with multiple layers, each spe-
cialized for a specific task. The top layer distributes the workload
among the available servers in a distributed environment (cluster
or grid/cloud), while the other two layers operate at the server
level, with scheduling mechanisms to manage compute- and
memory-bound codes on multicore and manycore servers with
accelerators.

The key distinction between multicore and manycore servers
in the context of this work is not only related to number of cores
in the chip (or package of multiple dies), but also mainly due to
the trade-offs the designers had to follow to fit in so many cores,
namely by removing the shared L3 cache. As for the accelerators,
these are usually optimized for a given set of operations rather
than be an optimized version of a general purpose CPU, so in
the context of this work HEP-Frame is highly effective to take
advantage of these devices to speedup specific time consuming
tasks.

The scheduler design and implementation are independent
from HEP-Frame, so that it can be integrated into other tools or
directly into the user code. The amount of propositions and their
dependencies are fed to the scheduler, during its initialization.
Computing threads only have to request the next task to process,
which consists of a combination of a proposition and a dataset
element, and report back to the scheduler if the proposition
passed or failed before requesting the next task. The stand-alone
multi-layer scheduler is also available for download.? The multi-
layer scheduler will be presented through the next subsections
within the context of the HEP-Frame tool, where the detailed
scheduler features are self-contained and independent from any
external code.

2 https:/[bitbucket.org/ampereira/hep-frame/src/master/
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Fig. 3. Multi-layer structure of the HEP-Frame scheduler.

3.1. Structure of the scheduler layers

The HEP-Frame scheduler is currently structured in three lay-
ers, as shown in Fig. 3, to efficiently use the available computa-
tional resources in multiple multicore and manycore devices.

The top layer manages multiple datasets using a master—
worker demand-driven approach on a distributed environment.
Worker processes request dataset files of a predefined size to
a master process until all data is processed. Preliminary tests,
using up to 6 multicore and manycore servers, showed that
this approach leads to an efficient task balance with minimal
overhead.

The main focus of the HEP-Frame scheduler is on desktop
servers and mini-clusters, since the number of computing cores
in current devices is rapidly increasing. More complex strate-
gies could be later implemented on the top layer to efficiently
schedule the workload among nodes in a larger cluster server.

The middle layer implements a multithreaded file/data-stream
reading with the data structure creation and pre-processing, the
data setup (DS), in parallel with the pipeline execution, the data
processing (DP). This layer is responsible for the management of
the amount of threads dedicated to DS and DP tasks, adapting
each amount at runtime to the needs of the application. The
number of parallel threads allocated to each component (DS and
DP) is adjusted during the overall execution of the application, to
adapt to memory or compute bound code.

The bottom layer implements parallel data processing for mul-
ticore or manycore environments, which will mostly improve the
performance of compute bound code, where propositions of the
same or different dataset elements are concurrently executed,
prioritizing the execution of faster propositions that filter more
data, while respecting dependencies among propositions in the
pipeline. This pipeline order is periodically updated, as described
in [4], according to changes in the computational characteristics
of the propositions.

The execution time and the amount of data filtered out by
each proposition may change at run-time due to (i) the values
of the dataset elements that may specify different operations to
perform, each with a different computational impact, and (ii) the
relative position of the propositions in the pipeline, as some may
filter out data at the beginning of the pipeline that will not be
later processed by compute intensive propositions. An adaptive
scheduling strategy is required in this layer since the execution
time and filtering ratios of propositions may significantly vary
during run-time.

This layer also manages the distribution of the workload in a
Xeon compute server coupled with manycore KNC co-processors.
A demand-driven strategy is used, where the KNC devices request
from the Xeon PU data chunks to process.

HEP-Frame also provides a set of GPU accelerated functions
to generate large sets of pseudo-random numbers (PRNs). These
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are usually required by most data analysis applications, where
PRN generation may take a significant slice of the application
execution time. Offloading this task to an accelerator allows faster
generation of PRNs and frees up resources in the multicore/many-
core devices, which HEP-Frame uses to compute other parts of the
application. The user interacts with the HEP-Frame PRNG API as
regular multicore-based code, while the efficient PRN generation
and management is completely transparent and is supervised by
HEP-Frame.

3.2. Dynamic tuning of data setup and processing

This HEP-Frame core scheduling layer manages the parallel ex-
ecution of the data read and setup task (the DS) and the pipeline
data processing task (the DP), ensuring that both compute- and
memory-bound codes are efficiently executed (most frameworks
do not support this capability). This balance is achieved when a
DS task finishes close to a new DP task requesting more data to
process, and it not only minimizes the overall execution time,
but also the size of used memory, since input data is immedi-
ately consumed. For each supported mode to input data into the
pipeline (batch/mini-batch from files, and streaming, detailed in
Section 2.1) the user must provide the code to load a single data
element from the chosen input type.

This scheduler layer creates one DS thread and one DP thread
per physical multicore PU core, but at any time it only activates
one thread. It periodically allocates, in run-time, the number of
threads to DS and to DP, avoiding the performance penalty of
creating and destroying threads at each core: it simply switches
on the required DS or DP thread and puts asleep the other one.
Preliminary tests showed that using a separate thread for DS
and DP in the same core did not increase the overhead and was
simpler for the scheduler to manage, when compared to a single
thread that switches between both tasks.

The following heuristic leverages the amount of threads for the
DS tasks and for the DP tasks:

e define the time between checkpoints to adjust the number
of DS threads (DSt) and the number of DP threads (DPt) as
the time to read and process a chunk of dataset elements in
the file (default value: a pre-defined size);

e activate the same amount of threads for DSt and DPt as the
initial default value;

e at each checkpoint dynamically tune the number of threads
for each task;

e allocate all threads to DP once the DS is complete.

To tune the number of threads for each task at each check-
point, the scheduler follows these steps:

e measure the execution times for DS and DP tasks (DStgime
and DPtinme) to process the pre-defined chunk of dataset
elements in the file;

e compute the time impact of each thread, by dividing the
chunk execution time by the amount of threads used, for
both data setup (DStime) and processing (DPtime);

e when the DP task takes longer than the DS one, allocate
more threads for the DP tasks, and vice-versa; if both DS
and DP execution times are similar, set a balanced amount
of threads to DS and DP;

e compute the number of threads (nt) that should be shifted
from setup to processing and vice-versa, according to Eq. (1)
(if DS; < DP;) and 2 (if DP; < DS;);

DS, + DP

DS, — nt % DStyime = % (1)
DS + DP

DP, — nt # DPtyjme = ———- ;’ : (2)
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e double the time between checkpoints when nt is zero,
which means no change is necessary, in two consecutive
checkpoints, to reduce the scheduler overhead;

e double the checkpoint rate, when nt values are different
from zero in two consecutive checkpoints, to deal with the
dataset irregularity.

Compute-bound code benefits from having more DP threads
active, while still simultaneously reading the input data at a lower
rate. The scheduler assigns the largest possible amount of DP
threads to not wait for data to be loaded.

The limitations of memory-bound code are usually due to
accessing data in RAM at a slower rate than its processing, which
can be due to either the latency of the RAM devices or the
memory channel bandwidth. However, if the required amount
of data is larger than the RAM size or is not yet in RAM, then
the data access bottleneck moves to the data transfer from an
HDD/SSD into RAM, which becomes an [/O-bound code. HEP-
Frame addresses this latter view on memory-bound code, since
the scheduler layer balances the threads between DS (which
contain both data reading and initial setup) and DP tasks. Using
a large amount of DS threads allows for data to be loaded at a
higher rate, while ensuring that the DP threads do not have to
wait for data to be loaded.

HEP-Frame may also improve the performance of 1/O-bound
code using an input data stream from an external source, pro-
vided that the limitation is not the stream bandwidth.

Preliminary experimental results showed that there are no
significant benefits of using simultaneous multithreading (Intel
Hyper-Threading) in both compute- and memory-bound codes.
No results are shown to avoid littering this communication with
less relevant data, since it is common knowledge among the
computer science community that using Intel Hyper-Threading
seldom leads to performance improvement.

Current memory monitoring system in HEP-Frame only frees
the whole data structure in memory when all data is processed
by the pipeline. This will be later improved to continuously free
memory as soon as the dataset elements are consumed by the
pipeline. When there is no data in the input stream the DP
threads are put asleep.

3.3. Pipeline ordering and parallel execution in a multicore server

The end user suggests an execution order of the pipeline
propositions, but it may not be computationally efficient. Re-
ordering the pipeline often leads to a faster analysis execution,
while respecting their inter-dependencies. If the propositions that
discard more data elements are placed earlier in the pipeline
and the heavier propositions in later stages, fewer data will
be computed by the heavier propositions, reducing the overall
application execution time.

Propositions execution flow can only be defined by a directed
cyclic graph, unlike most list scheduling algorithms: in the ab-
sence of dependencies, propy can be executed before prop; and
vice-versa, which is represented by a bidirectional edge allowing
cycles to be present on the graph. Most list schedulers cannot
be used due to this property, and more computational power is
required to find the best list order than on acyclic graphs.

The HEP-Frame scheduler takes a simpler alternative approach
since it does not need to follow a strict propositions order in a
parallel environment: it creates a graph, where a direction edge
between two nodes (propositions) represents a dependency, pre-
viously defined by the user. If propy needs to be executed before
prop; there is only a directional edge from propg to prop;. Then
the Breadth-First Search (BFS) algorithm [16] is used to compute
a list of all paths in the graph with directional edges, which
corresponds to the list of dependencies among propositions. BFS
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Fig. 4. Sample pipeline execution with the HEP-Frame scheduler.

has a complexity of O(N?), but preliminary tests showed that
its execution time was negligible, as applications usually have
a small amount of different tasks for it to be a limiting fac-
tor. For instance, the case studies presented in Section 4 only
have 18 propositions and the graph only has 33 edges. This
implementation is further detailed in [4].

A table is built with n levels, where n is the amount of
propositions in the longest dependency chain. Fig. 4 illustrates the
parallel execution of a pipeline on a 4-core server, with 7 propo-
sitions (pO0...p6) for various dataset elements (e0, el...), where
the longer dependency chain has 3 propositions. The scheduler
assigns propositions from a given table level to the threads to
process, but does not assign a proposition of the next level until
all propositions on the current level are processed.

Since dependent propositions are on different levels, this
mechanism ensures that all dependencies are respected. If a
proposition criteria evaluation fails, or if there are more threads
than propositions within the current level, the scheduler starts
assigning propositions of the next dataset element.

Propositions are ordered according to their weight within each
level; those that weight less will be processed earlier. This weight
is calculated based on the ratio of discarded dataset elements and
its execution time. The default values are set to 70% for the former
and 30% for the latter, which is a heuristic based on extensive
testing with various case studies, but can be tuned by the users.

Propositions can also be moved between table levels: propo-
sitions with long execution times and that filter out few data
are processed later in the pipeline. These propositions may not
have dependencies, but moving them to another level introduces
an artificial dependency, which acts as a barrier. This allows
lighter propositions, which filter out a larger amount of dataset
elements, to be processed earlier in the pipeline. It ensures that
there is more data that is filtered out by these faster propositions,
and fewer data reaches the heavier propositions. It means that
originally the heavier propositions were being processed on data
that was then filtered out, and now only data that passes the
faster propositions are processed by these heavier propositions.
Overall, these heavier propositions are processed less often than
originally, reducing the execution time of the pipeline (detailed
in [4]).

Fig. 5 compares a traditional list scheduler with the HEP-
Frame scheduler for a case study with 4 independent propositions
(p0...p3) and several dataset elements e, on a 4-core server.

In this illustrative case study it is assumed that proposition p2
filters out dataset element eN (red box) and proposition p3 takes
significantly longer to execute than the remaining propositions.
HEP-Frame automatically measured this information about these
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propositions during the execution of the first N-1 dataset ele-
ments, since the programmer seldom has any knowledge about
the proposition computationally characteristics.

In a traditional list scheduler a weight is assigned to each
proposition, which can be similar to the HEP-Frame approach,
causing propositions to be ordered in a list that is used to feed
subsequent propositions to computing threads. This approach
takes into account the filtering of data in the weight calculation,
but not when executing the proposition. This characteristic, allied
to the absence of barriers, means that propositions of a given
event can only be executed sequentially as dependencies cannot
be assured otherwise, allowing only for data-level parallelism.
Moreover, the absence of barriers does not allow for a more strict
reordering of propositions that HEP-Frame uses.

The use of barriers between levels of the table ensures that (i)
selected groups of propositions can be simultaneously executed
on the same or on different dataset elements and (ii) there is a
higher probability of an element being filtered out before execut-
ing a heavy proposition, reducing the overall execution time of
the pipeline.

A traditional list scheduler would schedule each proposition
p0 to p3 to a different thread in this 4-core server: p3 is executed
(yellow box) wasting computational resources since its output is
discarded for eN due to p2 failure.

The HEP-Frame scheduler introduced an artificial dependency
based on p3 weight, which forced p3 to be executed after all other
propositions, so p0 for the next dataset element was assigned to
the last thread. This avoided unnecessary computations, as p3 was
never executed for eN. This strategy may provide significant per-
formance improvements for propositions that take considerably
longer to execute than others (sometimes by a factor of 10°, as
are the case studies in Section 4, used to validate this work).

An improvement of the traditional list scheduler could con-
sider a task as a combination of the proposition and the dataset
element, so that it could execute the p3 of several e much later
than the p0-2 of those e. However, separating their execution by a
significant amount of time leads to a poorer use of the spatial and
the temporal locality of the dataset, as an element would be par-
tially processed by some propositions and then processed again
some time later. For instance, when p3 is executed, this approach
requires to reload into cache data that was already previously
there, resulting in a higher cache miss rate than processing p3 as
soon as the dataset element is not filtered out by the previous
propositions. An efficient use of the cache is crucial to ensure
the efficient use of the available computational resources, leading
to a faster execution time of the pipeline over the improved
list scheduler. The HEP-Frame scheduler takes advantage of the
spatial and temporal locality of the data, as it schedules p3 for
execution as soon as p0-2 finish.

Traditional list schedulers are extremely efficient at managing
pipelines of tasks that do not filter out dataset elements, but are

not designed to schedule propositions. As stated before, their lack
of barriers, and thus task-level parallelism of a single or multiple
dataset elements does not ensure the most efficient balance of
data and propositions among threads. This may lead to the unnec-
essary execution of computationally intensive propositions, such
as p3 in Fig. 5. This novel strategy of simultaneously processing
propositions of the same and different dataset elements, while
reordering and respecting proposition dependencies, reduces the
computational load and leads to a faster adaptation to irregular
workloads, thus reducing the overall execution time compared to
alternative approaches.

3.4. Pipeline ordering and parallel execution in a manycore server

The scheduling algorithm was tweaked to be able to explore
the KNL massive parallelism potential, since most manycore de-
vices lack a cache level. Reordering pipelines with complex de-
pendencies requires frequent scheduler synchronizations, which
may limit performance when large amounts of threads are run-
ning (up to 256 on KNL), due to the missing L3 cache.

Each thread on the KNL computes the whole pipeline of a
predefined data chunk size, instead of a combination of a dataset
element and a proposition. The execution time and the ratio
between processed dataset elements and those filtered out are
still measured for each pipeline stage, as it will still contribute to
the reordering of the pipeline. After processing a data chunk, an
average of the normalized measured values of all threads for each
proposition is computed, which attributes a global weight to each
proposition.

A directed cyclic graph is built, where each node represents a
proposition and the edges to a given node have the weight of the
respective proposition. A dependency where p1 must be executed
after p0 is represented by an edge with an “infinite” weight on the
edge from p1 to p0, ensuring that a path with “infinite” weight is
never used. A list of all nodes that can be used to start a path is
stored when building the graph. This list scheduling approach is
different than the one presented in Section 3.3, since the use of
barriers has an adverse impact on KNL devices due to the large
amount of threads being executed (usually around 250), slower
clock rate, lack of L3 cache and costly communications among
cores.

The best pipeline order is obtained by computing the shortest
path that passes through all nodes (propositions) of the graph us-
ing a recursive backtracking algorithm. The shortest path, i.e., the
path with the least weight, is computed for each node that can
be used as the beginning of a path on the graph. From these
paths, only the shortest is considered, which is used as the best
pipeline order at the moment. The backtracking algorithm to find
the shortest path for a given starting node is shown in Fig. 6 and
is further detailed in [3].
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Fig. 6. Scheduler pipeline reordering backtracking algorithm for the KNL server.

Preliminary tests showed that the overhead of this algorithm
is less than 1% of the case studies presented in Section 4, since
it is only computed for a small set of starting nodes, and these
graphs usually have a small number of nodes (18 for these case
studies).

The pipeline is reordered at given checkpoints through the
application execution, as shown in Fig. 7.

These checkpoints enforce a barrier to ensure that all threads
do not process any dataset elements before computing a new
pipeline order (green boxes in Fig. 7). Once this order is calcu-
lated, all threads use it to process the next dataset elements until
the next checkpoint.

Scheduling the whole pipeline better explores the vectoriza-
tion capabilities of the KNL (it is easier to predict the instructions
that each thread will execute), but is not ideal for highly irregular
code, due to a coarser task grain size.

3.5. Offload into accelerators

Accelerator devices act as co-processors to improve the perfor-
mance of scientific code using one of two alternative approaches:
(i) to offload a significant portion of the code, ideally processing
it simultaneously with the multicore devices, or (ii) to offload
specific sections of code more suitable for the device, which may
account for a significant portion of the overall execution time.
HEP-Frame can use both offload strategies: it is currently com-
patible with Intel KNC co-processor, Intel KNL manycore server
and NVidia GPU accelerators.

The KNC device poses some limitations to the user:

e it requires to explicitly transfer the required data for the
propositions from the multicore memory to the manycore
memory, forcing the user to use simple data structures
(the same applies to the use of GPUs); developing the code
to transfer complex data structures, based on containers,
classes, and pointers, requires an expertise that most do-
main experts lack; tools to automate the generation of the
code to move data between multicore and KNC devices did
not consistently provide working implementations;

e the libraries required by the propositions must be specifi-
cally compiled to the device, which is often not feasible due
to compatibility issues.

An HEP-Frame proof-of-concept prototype was developed to
assess the feasibility of using KNC devices using approach (i).
Offloading propositions required the user to develop the code to
transfer the required data and to modify the proposition code.
The use of this accelerator only provided a 10% performance
improvement in the best case (using the Ivy Bridge server de-
scribed in Section 5.1, with further details of the case studies
in Section 4), while limiting the performance of most compute-
and memory-bound codes. Since most domain experts lack know-
how to develop efficient code for this device and it only has

the potential to provide a small performance improvement, this
prototype was discarded in the final version of HEP-Frame.

GPU use a different programming model from regular multi-
core code, on top of the same limitations of the KNC device. Most
libraries are not available in CUDA or OpenCL, and porting these
into the accelerator can be unfeasible. Therefore, it may not be
possible to use the offload approach (i), since most propositions
use libraries that were not ported for GPUs.

HEP-Frame can take advantage of KNC and GPU devices by
providing an APl with efficient implementations of frequently
used code for scientific applications. Currently, PRN generator
(PRNG) functions are supported, but more APIs can be added on
user feedback.

HEP-Frame is able to run the proposition pipeline on many-
core KNL servers, both as a single server and simultaneously
with other multicore/manycore servers. It uses a variation of the
scheduler in Section 3.3, which is presented in Section 3.4. An
HEP-Frame prototype was developed to assess the feasibility of
offloading PRNG to KNL servers, following the offload approach
(ii), but preliminary tests showed that it provides a smaller per-
formance improvement than offloading the whole pipeline exe-
cution.

3.5.1. Offloading pseudo-random number generation to accelerators

The current version of HEP-Frame supports several types of
PRNGs (available in MKL [17], ROOT [14] and PCG [18]), some of
which offloaded to NVidia GPUs, using the CUDA cuRand library,
and to the KNC, using the MKL library. The user can choose
one out of several PRNGs, all providing sets of values with both
uniform and Gaussian distributions:

e a simple PRNG, which uses the compiler default or the MKL
if available;

e a multithreaded PRNG, for PRN intensive applications, which
transparently fills a buffer available to the user;

e a PRNG on GPU, which is detailed in this subsection.

Scientific code requires a high quality PRNG, with a very large
period and a very small correlation between PRNs. Mersenne
Twister [19] is one of the most used PRNG, and is currently the
PRNG that is offloaded to GPUs and KNCs on HEP-Frame. The
cuRAND NVidia library provides an implementation that produces
a single PRN, which is encapsulated by a kernel in HEP-Frame to
produce a large set of values to efficiently use the available GPUs.
The MKL provides an implementation that generates a batch of
PRNs, which was integrated into a function that offloads it to
KNCs.

A thread is created on the multicore device for each computing
thread to manage a fixed size dual-buffer for PRNs. The first
buffer is filled with PRNs generated by the accelerator when HEP-
Frame is loading and creating the dataset structure, and every
PRN requested by the code is returned from the buffer. When the
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buffer is almost full, the managing thread instructs the accelerator
to generate a new set of PRNs to fill the other buffer, while the
first buffer is still being consumed. Buffers are swapped once one
of them is depleted.

Using two buffers per compute thread hides the PCI-Express
bottleneck and ensures that the code has always available PRNs
and is not locked waiting for the accelerator to generate them.
The buffer size can be tuned by the user if needed. Each managing
thread launches the PRNG kernel on the GPU and transfers the
required data through an individual CUDA stream, so that mul-
tiple managing threads can simultaneously issue PRNG requests.
The KNC implementation uses a similar strategy, with individual
memory transfer streams for each managing thread. The dual
buffer approach provided speedups up to 71x on a dual-socket
server, using the Pascal GPU. A detailed performance evaluation of
this approach with multiple GPU, manycore, and multicore PRNG
acceleration is available in [5].

3.6. Related scheduling work

Scheduling pipelined applications into available parallel re-
sources has been addressed in list schedulers, being traditional
list scheduling a well studied subject. The Heterogeneous Earliest
Finish Time (HEFT) [20] is one of the earliest and most rele-
vant heuristics to schedule tasks on heterogeneous processing
units, where tasks are assigned based on their priority and inter-
dependencies. The priority of a task is computed based on its
execution time and data transfer costs. Some relevant scheduling
works deserve an additional note and comment:

e in [21] the authors reorder the pipeline execution of
database queries, where queries that produce relevant tu-
ples are processed first; however, this approach does not
address the efficiency of the pipeline execution;

e in [22] the authors present a scheduler for pipelined streams
that reorders simple filters at run-time, which may seem
similar to the Multithreaded Multicore Process Scheduler layer
of the HEP-Frame scheduler; however, when reordering fil-
ters, it does not take into account that filters may be ir-
regular and computationally complex nor the potential data
dependencies among filters;

e in [23] the authors propose a scheduler that mixes stream-
ing task and data parallelism, but do not consider reordering
nor inter-task dependencies, assuming that all tasks are
always executed, none is filtered out;

e in [24] the authors propose a Predict Earliest Finish Time
algorithm for heterogeneous systems, but it only schedules
tasks (it does not take into account the dataset) and assumes
that all tasks are executed, disregarding the optimization
potential of conditional task stages;

e in [25] the authors propose a programming model to sched-
ule irregular workloads in stream applications; it supports
pipelines represented as cyclic graphs but does not consider
that they may filter out data and does not parallelizes nor
reorganizes the pipeline tasks;
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e in [26] the authors propose a set of algorithms for multi-
core list scheduling but assume that each individual task is
already parallelized, which makes the users accountable for
the efficiency of their parallel code;

e in [27] the authors present StreamBox, an out-of-order data
parallel engine with parallel execution of pipelines on data
streams; although it may seem very similar to the HEP-
Frame scheduler, it has severe limitations, as described be-
low.

The authors of StreamBox claim that its engine exploits both
data and out-of-order pipeline parallelism. However, this tool
displays yet a set of limitations that makes it unsuitable for the
type of data analyses this paper addresses:

e data parallelism is achieved by simultaneously process-
ing concurrent input streams, as well as batches of data
inside each stream; however, out-of-order pipeline paral-
lelism does not include parallel execution and reordering of
pipeline tasks; instead, StreamBox improves the processing
latency of specific data tuples by reordering and processing
in parallel data inside data batches;

e StreamBox assumes that all tasks in a pipeline are executed
and no data is filtered out, while HEP-Frame efficiently
addresses the propositions workload by removing from the
pipeline the tasks that failed one of the followup criteria;

e StreamBox focus on scheduling according to the character-
istics of the input data, assuming that the time to process
the pipeline is negligible; most scientific data analyses do
not behave like this, including those in the HEP-Frame case
studies;

e StreamBox provides a set of operators to manage multiple
concurrent streams, such as merge and synchronize, as well
as data reordering based on time stamps, which is out of the
context of the target applications for HEP-Frame.

HEP-Frame simultaneously exploits both data and out-of-
order pipeline parallelism, where multiple data tuples are con-
currently processed, as well as multiple propositions of a single
data tuple, improving both latency and computation throughput.

HEP-Frame tackles applications with pipelines whose proposi-
tions cannot be defined by directed graphs, as their position in the
pipeline may change during the application execution. However,
most recent work focus on scheduling tasks on heterogeneous
systems that can be represented as directed acyclic graphs, such
as [24,26,28], which cannot be used for the applications that this
work aims to improve, as shown in Section 3.3.

There is no approach in the literature that simultaneously
deals with pipeline reordering and proposition parallelization
for irregular workloads on heterogeneous servers, which is the
key research topic that the HEP-Frame scheduler targets. The
presented parallel list schedulers that reorder the pipeline apply
it atomically to different data, while HEP-Frame implements re-
ordering and parallel execution of propositions inside the
pipeline, to the same or different dataset elements, as detailed
in Section 3.3.
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4. The case studies

To evaluate the performance of the HEP-Frame scheduler, the
case studies should ideally have the following features:

e be representative of one or more classes of scientific code;

e be actual code developed by non-computer scientists;

e contain the key features of a pipelined data stream analysis
as described earlier, namely a very large set of stream-
ing n-tuple input data, over 10 processing pipeline stages,
some with commutative tasks andfor heavy and irregular
computational tasks, and that may filter out data;

e include variants of the same code: either more compute-
bound or more I/O-bound; this will allow to assess the
impact of the I/O access bottleneck.

The selection fell on a scientific data analysis code devel-
oped by high energy physics scientists at the ATLAS Experi-
ment [29] at CERN, to study the production of top quarks with
the Higgs boson [30], following head-on proton-proton collisions
(aka events) at the Large Hadron Collider (LHC): the ttH analy-
sis. Fig. 8 represents the final state topology of a proton beam
collision.

The outcome of an event is recorded by the ATLAS particle
detector, which measures the characteristics of the bottom quarks
(detected as jets of particles due to a hadronization process)
and leptons (both muons and electrons), but not the neutrinos,
as they do not interact with the detector sensors. These are
later analytically reconstructed by the ttH application, through
a kinematic reconstruction.

The ttH pipeline has 18 stages with the code structure of
Fig. 1, each coded as a proposition in HEP-Frame. Each stage has a
variable duration computational task (from few microseconds to
several milliseconds per n-tuple) and a test to filter out measured
events that do not comply with the theoretical model.

ttH may sample the kinematic reconstruction process within
the 99% confidence level, to reduce the relative measurement
uncertainty of the sensors in the ATLAS Experiment detector, with
a direct impact on the complexity of the performed computation
per event.

The proposition dependencies, defined by the user in HEP-
Frame, are represented in Fig. 9. Since the order that the propo-
sitions are executed may have a significant impact on the overall
execution time, the scheduler reordering of the computational
pipeline aims to improve the application performance, respecting
the inter-proposition dependencies.

Three variants of the tfH analysis were used as representative
case studies:

e ttH_as (accurate sensors): the data measured by the ATLAS
detector is considered 100% accurate when reconstructing
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Fig. 9. Schematic representation of the proposition dependencies in tfH
applications.

the event; this behaves as a latency-bound code® in most
computing systems;

e ttH_sci (sensors with a confidence interval): the ATLAS de-
tector has a measurement accuracy error up to 1% and
performs an extensive sampling within the 99% confidence
interval in the kinematic reconstruction, where only the best
reconstruction is considered; this version performs 1024
samples, where each requires the generation of 30 different
PRNs, to a total of 30 Ki numbers per event, leading to a
compute-bound code;

e ttH_scinp (sci with a new pipeline): two propositions
were replaced to perform different operations on the data
element, maintaining the same overall proposition depen-
dencies and only 128 samples within the same confidence
interval of ttH_sci; this version is also compute-bound.

On a given compute server, the 18 ttH_as propositions have
execution times always shorter than 13 microseconds, of which
16 pass more than 90% of the events. Two propositions have a
passing ratio of 63% and 50%, respectively.

The ttH_sci propositions have the same filtering ratios, since
they share the same pipeline flow as ttH_as, but two of them are
heavier with an execution time of 29 and 5 ms, respectively.

The new proposition 13 in ttH_scinp has a longer execution
time than in ttH_sci, around 49 ms, and proposition 16 has now
a passing ratio of 30%, versus 99% in ttH_sci.

The original sequential code of these three data analyses was
parallelized with OpenMP [13], using a common approach in
scientific code: independent events are processed in parallel by
the pipeline. The OpenMP dynamic scheduler was used to adapt
the workload distribution according to the irregularity of the
pipeline execution. The input data read and setup and the output
writing is performed sequentially. This implementation will be
used to perform a thread-by-thread comparison with HEP-Frame.

The case studies propositions depend on ROOT [14], a complex
library that cannot be properly ported to efficiently use accelera-
tor devices, such as NVidia GPUs. The propositions also require

3 Latency-bound code is limited by the memory latency, rather than its
bandwitdth. Applications that access a small amount of data but multiple times
in a inconsistent pattern may be susceptible to this behaviour.
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major modifications to algorithms and data structures beyond
ROOT to be executed on these devices, whose implementation
requires know-how that most non-computer scientists lack.

5. Performance evaluation

This section resumes the key previous results and comple-
ments with new experimental measurements that evaluate the
efficient execution of the improved HEP-Frame in heterogeneous
environments. It starts by describing the testbed environment
and the measuring methodology.

5.1. Testbed environment

Four different CentOS 6.3 compute servers performed the
quantitative evaluation of the HEP-Frame with the multi-layer
scheduler:

e a dual socket server with 12-core Intel Xeon E5-2695v2
Ivy Bridge devices @2.4 GHz nominal, 64 GiB RAM, with a
NVidia Tesla K20 with 2496 CUDA cores and 5 GiB of GDDR5
memory, linked through PCI-Express;

e a dual socket server with 16-core Intel Xeon E5-2683v4
Broadwell devices @2.1 GHz nominal (1.7 GHz nominal with
AVX2), 256 GiB RAM;

e a dual socket server with 24-core Intel Xeon Platinum 8160
Skylake devices @2.1 GHz nominal (1.4 GHz nominal with
AVX-512), 192 GiB RAM;

e a G4-core Intel Xeon Phi 7210 (KNL) server @1.3 GHz
(1.1 GHz nominal with AVX-512, 4-way simultaneous mul-
tithreading), 16 GiB of eRAM, 192 GiB of RAM; the KNL
computing tiles were configured as SNC-4 clustering mode,
with flat embedded RAM.

The three configurations of a ttH analysis, ttH_as, ttH_sci
and ttH_scinp, were tested with 128 input data files, each with
+6, 000 events (the dataset elements) and 250 different data
variables per event, measured by the ATLAS detector. The code
was compiled with the Intel 2018 compiler suite and the NVidia
CUDA 8.0 toolkit. A k-best measurement heuristic was used to
ensure that the results can be replicated, with k = 5 with a 5%
tolerance and a minimum/maximum of 15/25 measurements.

5.2. Results and discussion

This subsection presents and discusses key performance mea-
surements of the latest HEP-Frame version:

e efficiency of the dynamic tuning of DS and DP threads;

e the impact of HEP-Frame on the execution of the case stud-
ies;

e the use of a NVidia Kepler GPU as an accelerator;

e the performance of a KNL-based server with different con-
figurations;

e performance of the best configuration of the KNL server
versus multicore servers, with or without accelerators (in-
cluding a GPU);

e the performance of a cluster with multiple KNL servers;

e a comparative evaluation of the HEP-Frame scheduler with
the HEFT list scheduler.

More details on these and other experimental results can be
found at the wiki website (link in the footnote at the Introduc-
tion).
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Fig. 10. Speedup of dynamic tuning vs static of DS and DP threads.

5.2.1. Dynamic tuning of DS and DP threads

The dynamic tuning of DSt and DPt on a dual 12-core Ivy
Bridge server is compared against 3 fixed configurations of DSt-
DPt: 1-23, 12-12 and 22-2 (Fig. 10). These fixed configurations
attempt to illustrate what a user could manually choose as a
fixed distribution of the amount of DS and DP threads without
extensive profiling of the behaviour of the case studies during
their run-time on a 24-core server.

The dynamic tuning outperforms all fixed configurations. A
4x speedup was achieved for ttH_as against using 1 DSt, since
this code is limited by the DS phase, as most of the application
execution time is spent on this phase. Having more threads con-
currently loading data allows the remaining DP threads to process
data without having to wait as long as the fixed configuration, for
its setup.

The ttH_as converges to a stable DS-DP configuration after
loading 5% of the dataset (converge to 22-2), while the other two
case studies converge after only £2.5% of the dataset (to 2-22
and 6-18, respectively). The convergence of this process depends
on the irregularity of the computation, which is different for
each case study, and the irregularity created by the information
in the dataset, which is the same. This means that the ttH_as
has a more dynamic behaviour, where initially the processing is
more irregular than the other case studies that converge faster
(as stated before the propositions execution time depends on
different parameters of the dataset elements).

An analysis of the scheduler with the Intel VTune profiler
showed that, for the ttH_as latency-bound code, the most chal-
lenging case study for the scheduler, the DP threads were waiting
for data to be loaded for less than 10% of the overall data setup
time, resulting in a 90% utilization of the available computing
resources in the server during this case study execution. Com-
paratively, for a configuration with only one DS thread the DP
threads were waiting for data 95% of the overall execution time.
ttH_sci and ttH_scinp presented much higher utilization, as
they are inherently compute-bound.

5.2.2. Multithreading with and without HEP-frame

The performance of the three ttH analyses using HEP-Frame
was compared against their original implementations without
HEP-Frame but with a simple dataset-level parallelization of the
pipeline with OpenMP,* using one and two Xeon devices of the
Ivy Bridge, Broadwell, and Skylake micro-architectures (speedup
outcomes in Fig. 11). HEP-Frame significantly improved the per-
formance of all multithreaded codes:

4 In this implementation multiple threads process the whole pipeline with
different dataset elements, where the data reading and setup are sequential, as
in most analyses.
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Fig. 11. Speedup of the parallel ttH analyses with HEP-Frame vs a standard
OpenMP parallelization for the same number of threads.
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Fig. 12. Speedup of the case studies in HEP-Frame on servers with accelerators.

e ttH_as: up to 6x due to simultaneous DSt and DPt;

e ttH_sci and ttH_scinp: respectively 11.5x and 15x
speedups, mostly due to the pipeline run-time ordering and
workload scheduler;

e ttH_scinp: up to 17x mostly due to a worse initial pipeline
order.

A second multicore device in the same server did not always
lead to a linear performance improvement due to the NUMA
architecture. However, the user could allocate one process per
multicore device to eventually achieve higher speedups. This
approach was not considered in these tests since it would require
user configuration.

The Skylake server had the best speedup mostly due to its
higher core count.

5.2.3. GPU accelerators in the servers

The performance of two configurations of the heterogeneous
system was compared against homogeneous multicore configu-
rations, shown in Fig. 12: 1 or 2 Ivy Bridge devices with a Kepler
GPU vs 1 or 2 Ivy Bridge devices.

The dual-buffer PRNG offload to the GPU device led to an
higher PRN throughput, freeing multicore time to run other parts
of the case studies. This is specially evident in ttH_sci, as it is
the most compute intensive case study.

5.2.4. The KNL-based server

The KNL package has 32 mesh-interconnected compute tiles,
each a dual core PU sharing L2 cache, with on-package config-
urable embedded RAM (eRAM). The mesh structure and the mem-
ory organization are configured in boot time. KNL configurations
are detailed in [31].

The tiles mesh can be configured as all-to-all (generally the
worst performing), hemisphere/quadrant or sub-NUMA cluster-
ing (SNC-2/SNC-4), providing different levels of address affinity
and impact overall performance. The high bandwidth 16 GiB of
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Fig. 13. Speedup on the KNL server vs multicore dual socket servers.

eRAM (with similar latency as external RAM) can be configured
as last level cache, as flat addressable RAM (mapped in the overall
address space), or as an hybrid of both.

Experimental tests to evaluate the performance of the HEP-
Frame scheduler on the KNL server used 4 processes with a total
of 64, 128 and 256 threads. Results were compared against the
original multicore scheduler with 24 threads on the dual 12-core
Ivy Bridge server, showing that:

e the best configuration for the computing tiles is the SNC-4
mode, and eRAM as flat addressable RAM;

e eRAM as cache decreases performance in all case studies
by 10%-30%, since this code reuses little data (independent
processing of each dataset element);

e the peak speedup of 5.5x over the multicore server for
the ttH_sci, with 128/256 threads, is mostly due to the
vectorization capabilities, larger overall L2 cache and 4 in-
dependent processes with its own DS;

e the all-to-all clustering mode was +2x slower than the
SNC-4.

The multicore scheduler assigns a combination of a proposi-
tion and a dataset element to each thread at a time, reducing the
use of vectorizable code on this server. However, the simplified
reordering approach on the KNL server did not take advantage
of the inefficient ttH_scinp pipeline, as the complex scheduler
on the multicore does: the speedups are not as high as in the
ttH_sci (1.2x).

Fig. 13 compares the performance of the KNL server with three
multicore servers without accelerators and the Ivy Bridge server
with one Kepler GPU.

The ttH_sci application running with 128/256 threads on
the KNL outperforms the multicore-only servers with speedups
up to 5.5%. However, it only improved by 3x compared to the
server with a Kepler GPU, as a significant part of the execution
time of this application (PRNG) is accelerated by this device. The
memory-bound ttH_as does not improve as the KNL is designed
for highly parallel and vectorizable compute-bound code.

5.2.5. Multiple KNL servers

Fig. 14 shows the scalability of the case studies on HEP-Frame
for 2, 4, and 6 KNL servers, when compared to a single server.

As expected, the memory-bound ttH_as analysis scales less
with the increase in processing power, as the performance im-
provements are provided by the increase in memory and I/O
bandwidth for the file reading and data structure creation and
pre-processing.

ttH_scinp scales better than ttH_as, with an almost linear
speedup up to 4 servers. Beyond this it does not scale as well,
as more DS threads are required by the increased computational
throughput, leaving less room for DP threads.
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Fig. 14. Speedup of the case studies for 2, 4, and 6 KNL servers vs a single KNL
server.
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Fig. 15. Speedup of the HEP-Frame scheduler vs the StarPU using the dm
scheduler.

ttH_sci, the most compute intensive analysis, scales better
than the other case studies with a speedup of 1.9x, 3.9, and 5.6x
for 2, 4, and 6 servers, respectively.

The scalability of using 2, 4, and 6 multicore Xeon servers is
similar to the presented results.

5.2.6. HEP-frame scheduler vs starpu HEFT

Fig. 15 compares the performance of the HEP-Frame scheduler
with the more efficient StarPU HEFT scheduler, the double-queue
model (dm), on a single dual socket Xeon server and a KNL server:
on both servers the HEP-Frame scheduler outperformed StarPU.
The port of the case studies to StarPU was performed by the
authors, as the particle physicists that implemented them on
HEP-Frame did not have the required expertise to adapt to the
steep learning curve of StarPU. The code could not be adapted to
use GPUs, as it depends on ROOT functionalities that could not be
ported.

The ttH_sci performance only improved £50% on HEP-
Frame since this code benefits less from reordering and behaves
more as a regular compute-bound application. The most compute
intensive proposition is at the end of the pipeline (taking 70% of
the analysis execution time), while the most filtering propositions
are at the beginning by default. This is the case study that best
fits the characteristics of StarPU, as it focuses on compute-bound
code.

The speedup goes to 2.5x for the ttH_scinp analysis, as it
benefits the most from the proposition reordering in HEP-Frame,
since the default order is not as good as in ttH_sci. The StarPU
HEFT scheduling is less efficient with memory-bound code, as
shown by the speedup of using HEP-Frame on the ttH_as anal-
ysis, which is achieved by adapting the amount of DS threads
accordingly.

The dynamic tuning of DS and DP threads accounts for up to
2x speedup of HEP-Frame over HEFT. Both HEP-Frame and StarPU
HEFT schedulers behave similarly on KNL and the Xeon, with a
minor advantage of HEP-Frame on the KNL for ttH_sci over the
Xeon (58% vs 39% better than StarPU, respectively).
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Fig. 16. Overall speedup on HEP-Frame vs their original sequential implemen-
tation.

One limitation of StarPU HEFT scheduler common to the three
case studies is that explicit proposition dependencies cause a
proposition to await execution if it depends on the one being ex-
ecuted, therefore diminishing processor usage. HEP-Frame sched-
ules propositions from other dataset elements to mitigate this
problem and improve processor usage, leading to a performance
advantage over StarPU.

5.2.7. Overall performance improvement

Fig. 16 shows the speedup obtained with HEP-Frame vs the
original sequential implementation of the three case studies on
several servers.

HEP-Frame provides a significant performance improvement
for every case study, which is consistent across multiple plat-
forms with significant architectural differences. It adapts to ir-
regular compute-bound code, with overall speedups on the KNL
server up to 252x and 185x for the ttH_sci and ttH_scinp
applications. It also efficiently handles memory-bound code, with
a speedup of 30x of ttH_as application for every server.

The KNL server outperformed every other server mainly due to
its core count and greater vectorization capabilities: two AVX-512
vector units per core, while Skylake has only one AVX-512 vector
unit and Broadwell and Skylake have AVX units to operate on 256
bits. These two also suffered significant down clock frequency due
to the AVX instructions, which is less severe on the KNL.

Another contribution for the performance gap between KNL
and the multicore servers was the KNL configuration as SNC-
4, which forced HEP-Frame to schedule 4 processes to the KNL
device, reducing thread synchronizations and data consistency
overheads. The gap could be reduced if the user had defined a
similar multiprocess approach to the dual socket servers.

6. Conclusions and future work

This paper presented and discussed the key features of a
multi-layer scheduler for heterogeneous systems, best suited for
pipelined scientific data analyses. The scheduler is the main com-
ponent of a framework that aids the development and execution
of pipelined applications in heterogeneous systems, HEP-Frame,
where large raw experimental data is converted into useful infor-
mation through complex computational tasks. It provides several
abstractions of the computational complexities of heterogeneous
systems, so that scientists can develop efficient code in an easy
and intuitive environment.

The HEP-Frame scheduler was evaluated with three versions
of an actual case study: the tfH particle physics event data anal-
ysis, developed and used by CERN researchers, ported into HEP-
Frame by the scientists who designed the code. Each scheduler
layer performs a different action:
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e the top layer balances data and workloads among servers
in a heterogeneous cluster environment; it achieved good
scalability with both memory- and compute-bound codes,
in either multiple homogeneous or multiple heterogeneous
Servers;

e the middle layer dynamically tunes the number of threads
assigned to the parallel data read and setup (DS), including
the creation of adequate data structures, and the pipeline
execution (DP); it provided speedups up to 4x, when com-
pared to a fixed configuration of DS and DP threads, for the
same amount of total threads;

e the bottom layer addresses the scheduling at the server
level, managing the parallel execution of the dataset work-
load among the available computing resources in a server;
this layer includes the reordering of the pipeline proposi-
tions of the same dataset element and the parallel execution
of multiple dataset elements, ensuring that pipeline propo-
sitions that filter out most elements are executed as early as
possible.

The KNL manycore server provided speedups up to 5.5x, 4.8x
and 3.2x for the ttH_sci application, when compared to the
dual socket multicore servers, based respectively on Ivy Bridge,
Broadwell and Skylake devices. The KNL server also outperformed
the Ivy Bridge server with a GPU accelerator by 3x and 2.5x
for ttH_sci and ttH_scinp applications, respectively. Although
the KNL architecture was not designed to efficiently handle [/O-
bound code, the ttH_as application on the KNL server ran with
the same performance.

The framework also provides library functions, such as effi-
cient parallel implementations of different PRN generators for
both CPU and GPU devices, hidden behind an easy to use APl The
GPU PRNG achieved almost 2x performance improvement over
the homogeneous Xeon server for the PRN intensive ttH_sci
application; for the other ttH versions the speedup was marginal
as they do not rely as much on PRNs. The KNL server is still
faster than this heterogeneous server, with a 2.9x performance
improvement.

The HEFT list scheduler, integrated into HEP-Frame to be com-
pared with the framework scheduler, was outperformed by the
HEP-Frame scheduler in all tested cases. Most performance gains
were due to the balance between data setup and processing and
the reorganization of the propositions execution based on their
filtering rate.

HEP-Frame may not be as versatile as other frameworks, since
its scheduler is specially tuned for pipelined scientific code, but
it provides a user friendly environment to develop efficient and
portable applications. This ensures that scientists trust their code
and can easily maintain and improve it, which is not possi-
ble when their original code is heavily modified to extract ef-
ficient parallelization by someone else, on a single or multiple
heterogeneous servers.

Overall, the KNL server provided better performance than any
other tested server. The best global performance improvement
over the fine tuned original ttH_sci sequential code was: 81x
faster in the homogeneous dual 24-core Skylake server, 86x faster
in the heterogeneous dual 12-core lvy Bridge server with the
Kepler GPU, and 252x faster in the 64-core KNL server.

6.1. Future work

Extensions to the HEP-Frame are currently being considered.
One is to add to the scheduler support for nested pipelining,
to process a sequence (pipeline) of batches, where each batch-
proposition is a pipelined data stream. Nested pipeline reordering
may be required to process complex applications, where schedul-
ing of a single pipeline is an over-simplification of the workload
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that may not fully exploit the potential improvements of multiple
pipeline reordering.

Another path is to extend the scheduler to support the order-
ing of multiple DS blocks, each reading sets of values for distinct
datasets. These DS tasks may mix batch DS with continuous data
streaming, often required by queries on large databases.

An improvement of the top layer of the HEP-Frame scheduler
is under evaluation. Currently, it focuses on managing workloads
among a small amount of servers with a small overhead, but a
more complex strategy may be required to handle a large amount
of servers, which is common in most computing clusters.
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