
Frameworks to Aid Code Development and Performance Portability

1 iCSC2015, André Pereira, LIP-Minho/University of Minho

Development of High Performance Computing Applications 
Across Heterogeneous Systems

Lecture 2

Frameworks to Aid Code Development 
and Performance Portability

André Pereira

LIP-Minho/University of Minho

Inverted CERN School of Computing, 23-24 February 2015



Frameworks to Aid Code Development and Performance Portability

2 iCSC2015, André Pereira, LIP-Minho/University of Minho

Agenda

§ Motivation

§ Frameworks for Heterogeneous Programming

§ A Small Example with DICE

§ Performance Analysis of Case Studies



Frameworks to Aid Code Development and Performance Portability

3 iCSC2015, André Pereira, LIP-Minho/University of Minho

HetPlats Challenges
§ “I spent months optimising my code for HetPlats, I bet it will 

be super fast on this new system I just bought”
§ No! You need to re-tune the code for each system…

§ How is it possible to
§ achieve code scalability in each device?
§ simultaneously use both computing

devices?
§ write the code once and guarantee its 

performance across different HetPlats?

Motivation



Frameworks to Aid Code Development and Performance Portability

4 iCSC2015, André Pereira, LIP-Minho/University of Minho

Levels of Parallelism

Parallelism

Shared Memory

Distributed Memory

Task

Data

Vectorisation

Domain
Partitioning

Platform

Technique

Motivation



Frameworks to Aid Code Development and Performance Portability

5 iCSC2015, André Pereira, LIP-Minho/University of Minho

Frameworks

§ There are frameworks to help the development of code for 
heterogeneous platforms

§ They provide several key features to the programmer
§ Abstraction of the distributed memory environment
§ Automatic workload balance among processing units
§ Coding the algorithm once to run on different processing units
§ Management of different task dependencies
§ Adaptation to the computing platform

§ They are open source!
§ And provide several tutorials



Frameworks to Aid Code Development and Performance Portability

6 iCSC2015, André Pereira, LIP-Minho/University of Minho

Frameworks

§ The downside is…
§ Steep learning curve for non-computer scientists
§ Production code has to be re-written to fit their programming model
§ Some frameworks require user configuration for each task/algorithm, 

which may have a huge impact on performance

§ Different frameworks use different strategies to
§ Implement the algorithms
§ Minimise the costs of transferring the data among processing units
§ Handle RAW, WAW, and WAR task dependencies
§ Schedule the workload among processing units

Frameworks



Frameworks to Aid Code Development and Performance Portability

7 iCSC2015, André Pereira, LIP-Minho/University of Minho

Revisiting the Challenges

§ Different architectures
§ Distinct designs of parallelism
§ Distinct memory hierarchies

§ Different programming paradigms
§ Distinct code for efficient algorithms among devices

§ Workload management
§ High latency communication between CPU and device
§ Different throughputs among devices

✔

✔

✔

Frameworks



Frameworks to Aid Code Development and Performance Portability

8 iCSC2015, André Pereira, LIP-Minho/University of Minho

StarPU

§ “Task programming library for hybrid architectures”

§ Implementation through the library API or compiler pragmas

§ Uses a task-based parallelisation approach
§ Programmer codes codelets to run on the processing units
§ StarPU hides memory transfer costs by interleaving different tasks
§ Fixed workload grain size (defined by the user)
§ Also works on cluster environments with MPI

Frameworks



Frameworks to Aid Code Development and Performance Portability

9 iCSC2015, André Pereira, LIP-Minho/University of Minho

Legion

§ “Data-centric programming model for writing high performance 
applications”

§ A parallelisation approach focused on the data set
§ User specifies properties to the data structures, such as organisation, 

partitioning, and coherence
§ Legion handles the parallelism and data transfer, according to the 

specified properties
§ User maps the tasks to the processing units
§ Legion schedules the workload at runtime to handle irregular tasks

Frameworks



Frameworks to Aid Code Development and Performance Portability

10 iCSC2015, André Pereira, LIP-Minho/University of Minho

DICE

§ Programming model and runtime system for irregular 
applications
§ Dynamic Irregular Computing Environment

§ Data parallelism approach with an unified memory space
§ Provides various data containers, with different properties
§ Allows to provide optimised code for each processing unit
§ The user has to code a dicing function – used to minimise the data 

transfers
§ Workload grain size adapts dynamically at runtime

§ Requires some expertise to produce high performing code

Frameworks



Frameworks to Aid Code Development and Performance Portability

11 iCSC2015, André Pereira, LIP-Minho/University of Minho

DICE – Runtime System
Frameworks



Frameworks to Aid Code Development and Performance Portability

12 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ SAXPY – Single precision alpha * x[i] + y[i]
§ Linear complexity O(n)
§ No data dependencies

void saxpyCPU (float a, float *x,
float *y, float *r, int N) {

for (int i = 0; i < N; i++)
r[i] = a * x[i] + y[i];

}



Frameworks to Aid Code Development and Performance Portability

13 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Data Structures
§ Defined inside the work class
§ Global memory construct to be shared among processing units
§ Scalar variables do not need a special identifier
§ This belongs to the high level API

smartPtr<float> R;
smartPtr<float> X;
smartPtr<float> Y;

float alpha;



Frameworks to Aid Code Development and Performance Portability

14 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Data properties
§ Assigned to the data structure when they are initialised
§ smarPtr are classes, implementing getters and setters
§ Properties: DEVICE, SHARED, READ_ONLY

smartPtr<float> R = smartPtr<float>(N, Property) ;



Frameworks to Aid Code Development and Performance Portability

15 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Define the task properties
§ Give an unique identifier to each task

enum WORK_TYPE {
/*!< Empty job description. DO NOT CHANGE */
WORK_NONE = W_NONE,
/*!< SAXPY job definition */
WORK_SAXPY, 
/*TO DO: Add you job descriptions here */
/*!< Total number of job definitions. DO NOT CHANGE */
WORK_TOTAL, 
/*!< Reserved bit mask job. DO NOT CHANGE */
WORK_RESERVED = W_RESERVED

};



Frameworks to Aid Code Development and Performance Portability

16 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Fit the code to the Worker class
§ Declare an empty constructor with the job description
§ W_REGULAR indicates that the workload is irregular (as opposed to 

W_IRREGULAR)
§ W_SAXPY maps the defined identifier to the method

saxpy() : work(WORK_SAXPY | W_REGULAR) {

}



Frameworks to Aid Code Development and Performance Portability

17 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Fit the code to the Worker class
§ __HYBRID__ indicates that the code is to be simultaneously scheduled 

among all processing units
§ __DEVICE__, accompanied by a template<DEVICE_TYPE> specifies 

the code to be compiled for a specific device

__HYBRID__ saxpy() : work(WORK_SAXPY | W_REGULAR) {

}



Frameworks to Aid Code Development and Performance Portability

18 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Fit the code to the Worker class
§ Create another construct that receives the inputs as smartPtr data 

structures
§ Length, lower, and upper?

__HYBRID__ saxpy(
smartPtr<float> _R, smartPtr<float> _X, smartPtr<float> _Y,
float _alpha, unsigned _LENGTH, unsigned lo, unsigned hi) 
: work(WORK_SAXPY | W_REGULAR),
R(_R), X(_X), Y(_Y), alpha(_alpha),
LENGTH(_LENGTH), lower(lo), upper(hi)
{

}



Frameworks to Aid Code Development and Performance Portability

19 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ The dicing function (the hard bit…)
template<DEVICE_TYPE>
__DEVICE__ List<work*>* dice(unsigned &number) {

unsigned range = (upper-lower);
unsigned number_of_units = range / number;

if(number_of_units == 0) {
number_of_units = 1;
number = range;

}
unsigned start = lower;
List<work*>* L = new List<work*>(number);

for (unsigned k = 0; k < number; k++) {
saxpy* s = new saxpy(R,X,Y,alpha,LENGTH,start,start+number_of_units);
(*L)[k] = s;
start += number_of_units;

}
return L;

}



Frameworks to Aid Code Development and Performance Portability

20 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Finally, the SAXPY code!
§ tid will define the position to process (similar to CUDA)
§ The code takes the upper and lower bound of the vector into account

template<DEVICE_TYPE>
__DEVICE__ void execute() {

if(TID > (upper-lower)) return;
unsigned long tid = TID + lower;

for(; tid < upper; tid+=TID_SIZE) 
r.set(tid, x.get(tid)*alpha+y.get(tid));

}



Frameworks to Aid Code Development and Performance Portability

21 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Initialise the runtime system, prepare the input data, and 
execute the code

// Initialize runtime system
RuntimeScheduler* rs = new RuntimeScheduler();
// Create global memory space for shared vectors
smartPtr<float> R = smartPtr<float>(sizeof(float)*N, SHARED);
smartPtr<float> X = smartPtr<float>(sizeof(float)*N, SHARED);
smartPtr<float> Y = smartPtr<float>(sizeof(float)*N, SHARED);
// Initialise the data…
…
// Create work description
saxpy* s = new saxpy(R,X,Y,alpha,N,0,N);
// Submit work for execution and synchronize after execution
rs->submit(s);
rs->synchronize();



Frameworks to Aid Code Development and Performance Portability

22 iCSC2015, André Pereira, LIP-Minho/University of Minho

Testbed Environment

§ Morpheus
§ 2x Intel Xeon 6-core CPUs @ 2.6 GHz
§ 2x NVidia Tesla C2070 4 GB DRAM

§ MacBook Pro
§ Intel i7 Ivy Bridge 4-core CPU @2.6 GHz
§ NVidia 650M GPU

§ Software
§ GNU compiler version 4.8.3
§ CUDA Toolkit 6.5



Frameworks to Aid Code Development and Performance Portability

23 iCSC2015, André Pereira, LIP-Minho/University of Minho

SAXPY with DICE

Scalability of SAXPY for various system configurations
for a vector of 300M elements

C – CPU
G – GPU

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

24 iCSC2015, André Pereira, LIP-Minho/University of Minho

SAXPY with DICE

§ This problem is not scalable…

§ The overhead of communications and scheduling restricts 
performance
§ The problem is extremely regular and too simple (computationally)
§ Analyse your code first!

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

25 iCSC2015, André Pereira, LIP-Minho/University of Minho

Barnes-Hut with DICE

§ Barnes-Hut algorithm simulates n-body system interactions
§ Divides the space, creates an hierarchy to speedup particle interaction 

calculations, with a complexity of O(n log(n))
§ Particle clusters should be on the same processor
§ Workload is dynamic
§ Fastest GPU implementation by Burtscher and Pingali (B&P)

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

26 iCSC2015, André Pereira, LIP-Minho/University of Minho

Barnes-Hut with DICE

Execution time of Barnes-Hut for 1M particles

C – CPU
G – GPU

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

27 iCSC2015, André Pereira, LIP-Minho/University of Minho

Barnes-Hut with DICE

§ Not a big improvement over the best GPU implementation

§ The problem size is not big enough
§ The communication and workload management overhead restricts 

the performance

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

28 iCSC2015, André Pereira, LIP-Minho/University of Minho

Barnes-Hut with DICE

Scalability of Barnes-Hut for various problem sizes

C – CPU
G – GPU

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

29 iCSC2015, André Pereira, LIP-Minho/University of Minho

Path Tracing with DICE

§ Monte Carlo simulation to render physically accurate scenes
§ Recursive algorithm
§ Dynamic workload

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

30 iCSC2015, André Pereira, LIP-Minho/University of Minho

Path Tracing with DICE

Ray count for progressive pathtracer with variance 
threshold of 1% (left) and 25%(right)

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

31 iCSC2015, André Pereira, LIP-Minho/University of Minho

Path Tracing with DICE

Comparison of the StarPU and DICE implementations of the
Path Tracer running on Morpheus 

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

32 iCSC2015, André Pereira, LIP-Minho/University of Minho

Path Tracing with DICE

• DICE provides a 20% performance improvement

• DICE is 2x faster than StarPU in the best case

• Handles CPU+GPU parallelisation better than StarPU

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

33 iCSC2015, André Pereira, LIP-Minho/University of Minho

Path Tracing with DICE

Workload distribution between the CPU and GPU for the Adaptive
Path Tracer (irregular workload)

Frame Number

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

34 iCSC2015, André Pereira, LIP-Minho/University of Minho

– Dynamic Static

Path Tracing with DICE

Frame by frame execution time for dynamic vs static
(40% CPU, 60% GPU) schedulers

Dynamic: 122 s
Static: 157 s 

Frame Number

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

35 iCSC2015, André Pereira, LIP-Minho/University of Minho

Path Tracing with DICE

§ DICE dynamically adapts to the change of task execution time
§ It is always tuning the amount of work that the CPU/GPU processes

§ Dynamic scheduling is 30% faster than a tuned static scheduling 
technique

Performance Analysis



Frameworks to Aid Code Development and Performance Portability

36 iCSC2015, André Pereira, LIP-Minho/University of Minho

Conclusions

§ Coding for HetPlats is complex and time consuming
§ Simultaneously deal with different levels of parallelism

§ There are frameworks to help code development
§ Some effort is required to get familiar with
§ Automatically balance the workload among CPUs and GPUs
§ Adapt to the computing platform and irregular tasks at runtime



Frameworks to Aid Code Development and Performance Portability

37 iCSC2015, André Pereira, LIP-Minho/University of Minho

Acknowledgment

§ A special thanks to the DICE developers for letting me use the 
framework – which is still in beta
§ João Barbosa – UMinho & University of Texas
§ Roberto Ribeiro – UMinho
§ Donald Fussell – University of Texas
§ Calvin Lin – University of Texas
§ Luís Paulo Santos – UMinho
§ Alberto Proença – UMinho



Frameworks to Aid Code Development and Performance Portability

38 iCSC2015, André Pereira, LIP-Minho/University of Minho

Development of High Performance Computing Applications 
Across Heterogeneous Systems

Lecture 2

Frameworks to Aid Code Development 
and Performance Portability

André Pereira

LIP-Minho/University of Minho

Inverted CERN School of Computing, 23-24 February 2015


