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Agenda

§ Motivation

§ Frameworks for Heterogeneous Programming

§ A Small Example with DICE

§ Performance Analysis of Case Studies
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HetPlats Challenges
§ “I spent months optimising my code for HetPlats, I bet it will 

be super fast on this new system I just bought”
§ No! You need to re-tune the code for each system…

§ How is it possible to
§ achieve code scalability in each device?
§ simultaneously use both computing

devices?
§ write the code once and guarantee its 

performance across different HetPlats?

Motivation
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Motivation
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Frameworks

§ There are frameworks to help the development of code for 
heterogeneous platforms

§ They provide several key features to the programmer
§ Abstraction of the distributed memory environment
§ Automatic workload balance among processing units
§ Coding the algorithm once to run on different processing units
§ Management of different task dependencies
§ Adaptation to the computing platform

§ They are open source!
§ And provide several tutorials
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Frameworks

§ The downside is…
§ Steep learning curve for non-computer scientists
§ Production code has to be re-written to fit their programming model
§ Some frameworks require user configuration for each task/algorithm, 

which may have a huge impact on performance

§ Different frameworks use different strategies to
§ Implement the algorithms
§ Minimise the costs of transferring the data among processing units
§ Handle RAW, WAW, and WAR task dependencies
§ Schedule the workload among processing units

Frameworks
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Revisiting the Challenges

§ Different architectures
§ Distinct designs of parallelism
§ Distinct memory hierarchies

§ Different programming paradigms
§ Distinct code for efficient algorithms among devices

§ Workload management
§ High latency communication between CPU and device
§ Different throughputs among devices

✔

✔

✔

Frameworks
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StarPU

§ “Task programming library for hybrid architectures”

§ Implementation through the library API or compiler pragmas

§ Uses a task-based parallelisation approach
§ Programmer codes codelets to run on the processing units
§ StarPU hides memory transfer costs by interleaving different tasks
§ Fixed workload grain size (defined by the user)
§ Also works on cluster environments with MPI

Frameworks
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Legion

§ “Data-centric programming model for writing high performance 
applications”

§ A parallelisation approach focused on the data set
§ User specifies properties to the data structures, such as organisation, 

partitioning, and coherence
§ Legion handles the parallelism and data transfer, according to the 

specified properties
§ User maps the tasks to the processing units
§ Legion schedules the workload at runtime to handle irregular tasks

Frameworks
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DICE

§ Programming model and runtime system for irregular 
applications
§ Dynamic Irregular Computing Environment

§ Data parallelism approach with an unified memory space
§ Provides various data containers, with different properties
§ Allows to provide optimised code for each processing unit
§ The user has to code a dicing function – used to minimise the data 

transfers
§ Workload grain size adapts dynamically at runtime

§ Requires some expertise to produce high performing code

Frameworks
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DICE – Runtime System
Frameworks
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A Small Example with DICE

§ SAXPY – Single precision alpha * x[i] + y[i]
§ Linear complexity O(n)
§ No data dependencies

void saxpyCPU (float a, float *x,
float *y, float *r, int N) {

for (int i = 0; i < N; i++)
r[i] = a * x[i] + y[i];

}



Frameworks to Aid Code Development and Performance Portability

13 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example with DICE

§ Data Structures
§ Defined inside the work class
§ Global memory construct to be shared among processing units
§ Scalar variables do not need a special identifier
§ This belongs to the high level API

smartPtr<float> R;
smartPtr<float> X;
smartPtr<float> Y;

float alpha;
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A Small Example with DICE

§ Data properties
§ Assigned to the data structure when they are initialised
§ smarPtr are classes, implementing getters and setters
§ Properties: DEVICE, SHARED, READ_ONLY

smartPtr<float> R = smartPtr<float>(N, Property) ;
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A Small Example with DICE

§ Define the task properties
§ Give an unique identifier to each task

enum WORK_TYPE {
/*!< Empty job description. DO NOT CHANGE */
WORK_NONE = W_NONE,
/*!< SAXPY job definition */
WORK_SAXPY, 
/*TO DO: Add you job descriptions here */
/*!< Total number of job definitions. DO NOT CHANGE */
WORK_TOTAL, 
/*!< Reserved bit mask job. DO NOT CHANGE */
WORK_RESERVED = W_RESERVED

};
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A Small Example with DICE

§ Fit the code to the Worker class
§ Declare an empty constructor with the job description
§ W_REGULAR indicates that the workload is irregular (as opposed to 

W_IRREGULAR)
§ W_SAXPY maps the defined identifier to the method

saxpy() : work(WORK_SAXPY | W_REGULAR) {

}
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A Small Example with DICE

§ Fit the code to the Worker class
§ __HYBRID__ indicates that the code is to be simultaneously scheduled 

among all processing units
§ __DEVICE__, accompanied by a template<DEVICE_TYPE> specifies 

the code to be compiled for a specific device

__HYBRID__ saxpy() : work(WORK_SAXPY | W_REGULAR) {

}
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A Small Example with DICE

§ Fit the code to the Worker class
§ Create another construct that receives the inputs as smartPtr data 

structures
§ Length, lower, and upper?

__HYBRID__ saxpy(
smartPtr<float> _R, smartPtr<float> _X, smartPtr<float> _Y,
float _alpha, unsigned _LENGTH, unsigned lo, unsigned hi) 
: work(WORK_SAXPY | W_REGULAR),
R(_R), X(_X), Y(_Y), alpha(_alpha),
LENGTH(_LENGTH), lower(lo), upper(hi)
{

}
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A Small Example with DICE

§ The dicing function (the hard bit…)
template<DEVICE_TYPE>
__DEVICE__ List<work*>* dice(unsigned &number) {

unsigned range = (upper-lower);
unsigned number_of_units = range / number;

if(number_of_units == 0) {
number_of_units = 1;
number = range;

}
unsigned start = lower;
List<work*>* L = new List<work*>(number);

for (unsigned k = 0; k < number; k++) {
saxpy* s = new saxpy(R,X,Y,alpha,LENGTH,start,start+number_of_units);
(*L)[k] = s;
start += number_of_units;

}
return L;

}
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A Small Example with DICE

§ Finally, the SAXPY code!
§ tid will define the position to process (similar to CUDA)
§ The code takes the upper and lower bound of the vector into account

template<DEVICE_TYPE>
__DEVICE__ void execute() {

if(TID > (upper-lower)) return;
unsigned long tid = TID + lower;

for(; tid < upper; tid+=TID_SIZE) 
r.set(tid, x.get(tid)*alpha+y.get(tid));

}
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A Small Example with DICE

§ Initialise the runtime system, prepare the input data, and 
execute the code

// Initialize runtime system
RuntimeScheduler* rs = new RuntimeScheduler();
// Create global memory space for shared vectors
smartPtr<float> R = smartPtr<float>(sizeof(float)*N, SHARED);
smartPtr<float> X = smartPtr<float>(sizeof(float)*N, SHARED);
smartPtr<float> Y = smartPtr<float>(sizeof(float)*N, SHARED);
// Initialise the data…
…
// Create work description
saxpy* s = new saxpy(R,X,Y,alpha,N,0,N);
// Submit work for execution and synchronize after execution
rs->submit(s);
rs->synchronize();
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Testbed Environment

§ Morpheus
§ 2x Intel Xeon 6-core CPUs @ 2.6 GHz
§ 2x NVidia Tesla C2070 4 GB DRAM

§ MacBook Pro
§ Intel i7 Ivy Bridge 4-core CPU @2.6 GHz
§ NVidia 650M GPU

§ Software
§ GNU compiler version 4.8.3
§ CUDA Toolkit 6.5
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SAXPY with DICE

Scalability of SAXPY for various system configurations
for a vector of 300M elements

C – CPU
G – GPU

Performance Analysis
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SAXPY with DICE

§ This problem is not scalable…

§ The overhead of communications and scheduling restricts 
performance
§ The problem is extremely regular and too simple (computationally)
§ Analyse your code first!

Performance Analysis
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Barnes-Hut with DICE

§ Barnes-Hut algorithm simulates n-body system interactions
§ Divides the space, creates an hierarchy to speedup particle interaction 

calculations, with a complexity of O(n log(n))
§ Particle clusters should be on the same processor
§ Workload is dynamic
§ Fastest GPU implementation by Burtscher and Pingali (B&P)

Performance Analysis
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Barnes-Hut with DICE

Execution time of Barnes-Hut for 1M particles

C – CPU
G – GPU

Performance Analysis
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Barnes-Hut with DICE

§ Not a big improvement over the best GPU implementation

§ The problem size is not big enough
§ The communication and workload management overhead restricts 

the performance

Performance Analysis
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Barnes-Hut with DICE

Scalability of Barnes-Hut for various problem sizes

C – CPU
G – GPU

Performance Analysis
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Path Tracing with DICE

§ Monte Carlo simulation to render physically accurate scenes
§ Recursive algorithm
§ Dynamic workload

Performance Analysis
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Path Tracing with DICE

Ray count for progressive pathtracer with variance 
threshold of 1% (left) and 25%(right)

Performance Analysis
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Path Tracing with DICE

Comparison of the StarPU and DICE implementations of the
Path Tracer running on Morpheus 

Performance Analysis
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Path Tracing with DICE

• DICE provides a 20% performance improvement

• DICE is 2x faster than StarPU in the best case

• Handles CPU+GPU parallelisation better than StarPU

Performance Analysis
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Path Tracing with DICE

Workload distribution between the CPU and GPU for the Adaptive
Path Tracer (irregular workload)

Frame Number

Performance Analysis
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– Dynamic Static

Path Tracing with DICE

Frame by frame execution time for dynamic vs static
(40% CPU, 60% GPU) schedulers

Dynamic: 122 s
Static: 157 s 

Frame Number

Performance Analysis
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Path Tracing with DICE

§ DICE dynamically adapts to the change of task execution time
§ It is always tuning the amount of work that the CPU/GPU processes

§ Dynamic scheduling is 30% faster than a tuned static scheduling 
technique

Performance Analysis
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Conclusions

§ Coding for HetPlats is complex and time consuming
§ Simultaneously deal with different levels of parallelism

§ There are frameworks to help code development
§ Some effort is required to get familiar with
§ Automatically balance the workload among CPUs and GPUs
§ Adapt to the computing platform and irregular tasks at runtime
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