

Development of High Performance Computing Applications Across Heterogeneous Systems

Lecture 2

Frameworks to Aid Code Development and Performance Portability

André Pereira

LIP-Minho/University of Minho

Inverted CERN School of Computing, 23-24 February 2015

Agenda

§ **Motivation**

- Frameworks for Heterogeneous Programming
- A Small Example with DICE
- Performance Analysis of Case Studies

Motivation

HetPlats Challenges

- § **"I spent months optimising my code for HetPlats, I bet it will be super fast on this new system I just bought"**
	- No! You need to re-tune the code for each system...

- How is it possible to
	- achieve code scalability in each device?
	- § simultaneously use both computing devices?
	- write the code once and guarantee its performance across different HetPlats?

Motivation

Levels of Parallelism

Frameworks

Motivation

Frameworks for Heterogeneous Programming A Small Example with DICE **Performance Analysis of Case Studies**

School of Computing

- There are frameworks to help the development of code for heterogeneous platforms
- § They provide several key features to the programmer
	- Abstraction of the distributed memory environment
	- § Automatic workload balance among processing units
	- § Coding the algorithm once to run on different processing units
	- § Management of different task dependencies
	- § Adaptation to the computing platform
- § They are open source!
	- **And provide several tutorials**

Frameworks

Frameworks

- § The downside is…
	- § Steep learning curve for non-computer scientists
	- Production code has to be re-written to fit their programming model
	- § Some frameworks require user configuration for each task/algorithm, which may have a huge impact on performance
- Different frameworks use different strategies to
	- § Implement the algorithms
	- § Minimise the costs of transferring the data among processing units
	- § Handle **RAW**, **WAW**, and **WAR** task dependencies
	- Schedule the workload among processing units

✔

Frameworks

✔

✔

Revisiting the Challenges

§ **Different architectures**

- Distinct designs of parallelism
- § Distinct memory hierarchies

§ **Different programming paradigms**

■ Distinct code for efficient algorithms among devices

§ **Workload management**

- § High latency communication between CPU and device
- § Different throughputs among devices

StarPU Frameworks

- § *"Task programming library for hybrid architectures"*
- Implementation through the library API or compiler pragmas
- Uses a task-based parallelisation approach
	- Programmer codes *codelets* to run on the processing units
	- § StarPU hides memory transfer costs by interleaving different tasks
	- Fixed workload grain size (defined by the user)
	- § Also works on cluster environments with MPI

Legion **Frameworks**

- § *"Data-centric programming model for writing high performance applications"*
- § A parallelisation approach focused on the data set
	- User specifies properties to the data structures, such as organisation, partitioning, and coherence
	- Legion handles the parallelism and data transfer, according to the specified properties
	- User maps the tasks to the processing units
	- § Legion schedules the workload at runtime to handle irregular tasks

DICE **Frameworks**

- § Programming model and runtime system for irregular applications
	- § **D**ynamic **I**rregular **C**omputing **E**nvironment
- Data parallelism approach with an unified memory space
	- **Provides various data containers, with different properties**
	- Allows to provide optimised code for each processing unit
	- The user has to code a dicing function $-$ used to minimise the data transfers
	- Workload grain size adapts dynamically at runtime
- Requires some expertise to produce high performing code

Motivation **Frameworks for Heterogeneous Programming A Small Example with DICE**

Performance Analysis of Case Studies

- $SAXPY Single precision alpha * x[i] + y[i]$
	- **Linear complexity** $O(n)$
	- § No data dependencies

```
void saxpyCPU (float a, float *x,
                  float *y, float *r, int N) {
  for (int i = 0; i < N; i++)r[i] = a * x[i] + y[i];}
```


- Data Structures
	- Defined inside the work class
	- § Global memory construct to be shared among processing units
	- Scalar variables do not need a special identifier
	- This belongs to the high level API

smartPtr<float> R; smartPtr<float> X; smartPtr<float> Y;

float alpha;

Data properties

- Assigned to the data structure when they are initialised
- § smarPtr are classes, implementing *getters* and *setters*
- Properties: DEVICE, SHARED, READ_ONLY

smartPtr<float> R = smartPtr<float>(N, Property) ;

- Define the task properties
	- § Give an unique identifier to each task

```
enum WORK_TYPE {
 /*!< Empty job description. DO NOT CHANGE */
 WORK_NONE = W_NONE,
 /*!< SAXPY job definition */
 WORK_SAXPY, 
 /*TO DO: Add you job descriptions here */
 /*!< Total number of job definitions. DO NOT CHANGE */
 WORK_TOTAL, 
 /*!< Reserved bit mask job. DO NOT CHANGE */
 WORK_RESERVED = W_RESERVED
};
```


- Fit the code to the Worker class
	- Declare an empty constructor with the job description
	- W_REGULAR indicates that the workload is irregular (as opposed to W_IRREGULAR)
	- § W_SAXPY maps the defined identifier to the method

```
saxpy() : work(WORK_SAXPY | W_REGULAR) {
}
```


- Fit the code to the Worker class
	- $_{\rm HYBRID_}$ indicates that the code is to be simultaneously scheduled among all processing units
	- <u>__DEVICE_</u>, accompanied by a template<DEVICE_TYPE> specifies the code to be compiled for a specific device

__HYBRID__ saxpy() : work(WORK_SAXPY | W_REGULAR) {

}

- Fit the code to the Worker class
	- § Create another construct that receives the inputs as smartPtr data structures
	- Length, lower, and upper?

```
__HYBRID__ saxpy(
```

```
smartPtr<float> _R, smartPtr<float> _X, smartPtr<float> _Y,
float _alpha, unsigned _LENGTH, unsigned lo, unsigned hi) 
: work(WORK_SAXPY | W_REGULAR),
R(\_R), X(\_X), Y(\_Y), alpha(\_alpha),LENGTH(_LENGTH), lower(lo), upper(hi)
{
```
}

The dicing function (the hard bit...)

```
template<DEVICE_TYPE>
 __DEVICE__ List<work*>* dice(unsigned &number) {
 unsigned range = (upper-lower);
 unsigned number_of_units = range / number;
```

```
if(number_of_units == 0) {
       number_of_units = 1;
       number = range;
}
unsigned start = lower;
List<work*>* L = new List<work*>(number);
```

```
for (unsigned k = 0; k < number; k++) {
       saxyy* s = new saxyy(R,X,Y,alpha,LENGTH,start,start+number_of_units);(*L)[k] = s;start += number of units;
}
```
return L;

}

§ Finally, the SAXPY code!

}

- tid will define the position to process (similar to CUDA)
- The code takes the upper and lower bound of the vector into account

```
template<DEVICE_TYPE>
 __DEVICE__ void execute() {
       if(TID > (upper-lower)) return;
       unsigned long tid = TID + lower;
```
for(; tid < upper; tid+=TID_SIZE) r.set(tid, x.get(tid)*alpha+y.get(tid));

Initialise the runtime system, prepare the input data, and execute the code

// Initialize runtime system RuntimeScheduler* rs = new RuntimeScheduler(); // Create global memory space for shared vectors smartPtr<float> R = smartPtr<float>(sizeof(float)*N, SHARED); smartPtr<float> X = smartPtr<float>(sizeof(float)*N, SHARED); smartPtr<float> Y = smartPtr<float>(sizeof(float)*N, SHARED); // Initialise the data…

… // Create work description saxpy* $s = new$ saxpy(R,X,Y,alpha,N,O,N); // Submit work for execution and synchronize after execution rs->submit(s); rs->synchronize();

Testbed Environment

Motivation **Frameworks for Heterogeneous Programming** A Small Example with DICE

Performance Analysis of Case Studies

- **Morpheus**
	- 2x Intel Xeon 6-core CPUs @ 2.6 GHz
	- 2x NVidia Tesla C2070 4 GB DRAM
- § MacBook Pro
	- Intel i7 Ivy Bridge 4-core CPU @2.6 GHz
	- § NVidia 650M GPU
- § Software
	- § GNU compiler version 4.8.3
	- § CUDA Toolkit 6.5

Frameworks to Aid Code Development and Performance Portability

SAXPY with DICE **Performance Analysis**

C – CPU G – GPU

Scalability of SAXPY for various system configurations for a vector of 300M elements

SAXPY with DICE

- This problem is not scalable...
- The overhead of communications and scheduling restricts performance
	- The problem is extremely regular and too simple (computationally)
	- § Analyse your code first!

Barnes-Hut with DICE

§ Barnes-Hut algorithm simulates n-body system interactions

- § Divides the space, creates an hierarchy to speedup particle interaction calculations, with a complexity of O(n log(n))
- § Particle clusters should be on the same processor
- § Workload is dynamic
- § Fastest GPU implementation by Burtscher and Pingali (B&P)

Barnes-Hut with DICE

Execution time of Barnes-Hut for 1M particles

CEF School of Computing

Barnes-Hut with DICE **Performance Analysis**

- Not a big improvement over the best GPU implementation
- The problem size is not big enough
	- The communication and workload management overhead restricts the performance

Barnes-Hut with DICE

Scalability of Barnes-Hut for various problem sizes

Path Tracing with DICE

■ Monte Carlo simulation to render physically accurate scenes

- Recursive algorithm
- **Dynamic workload**

Path Tracing with DICE

Ray count for progressive pathtracer with variance threshold of 1% (left) and 25%(right)

Path Tracing with DICE

Comparison of the StarPU and DICE implementations of the Path Tracer running on Morpheus

Path Tracing with DICE

- DICE provides a 20% performance improvement
- DICE is 2x faster than StarPU in the best case
- Handles CPU+GPU parallelisation better than StarPU

Path Tracing with DICE

Workload distribution between the CPU and GPU for the Adaptive Path Tracer (irregular workload)

Path Tracing with DICE

Frame by frame execution time for dynamic vs static (40% CPU, 60% GPU) schedulers

Path Tracing with DICE

- § DICE dynamically adapts to the change of task execution time
	- It is always tuning the amount of work that the CPU/GPU processes
- § Dynamic scheduling is 30% faster than a tuned static scheduling technique

Conclusions

- § Coding for HetPlats is complex and time consuming
	- Simultaneously deal with different levels of parallelism
- There are frameworks to help code development
	- Some effort is required to get familiar with
	- § Automatically balance the workload among CPUs and GPUs
	- § Adapt to the computing platform and irregular tasks at runtime

Acknowledgment

- § A special thanks to the DICE developers for letting me use the framework – which is still in beta
	- João Barbosa UMinho & University of Texas
	- § Roberto Ribeiro UMinho
	- § Donald Fussell University of Texas
	- Calvin Lin University of Texas
	- § Luís Paulo Santos UMinho
	- § Alberto Proença UMinho

Development of High Performance Computing Applications Across Heterogeneous Systems

Lecture 2

Frameworks to Aid Code Development and Performance Portability

André Pereira

LIP-Minho/University of Minho

Inverted CERN School of Computing, 23-24 February 2015