
Scalable Parallel Computing

1 iCSC2015, André Pereira, LIP-Minho/University of Minho

Development of High Performance Computing Applications 
Across Heterogeneous Systems

Lecture 1

Scalable Parallel Computing

André Pereira

LIP-Minho/University of Minho

Inverted CERN School of Computing, 23-24 February 2015



Scalable Parallel Computing

2 iCSC2015, André Pereira, LIP-Minho/University of Minho

Agenda

§ Motivation

§ Heterogeneous Platforms (HetPlats)

§ Levels of Parallelism

§ Performance Scalability

§ Performance Portability



Scalable Parallel Computing

3 iCSC2015, André Pereira, LIP-Minho/University of Minho

Common Parallel Approach

§ CPUs have multiple complex computing cores
§ Use processes/threads to parallelise the code

Motivation



Scalable Parallel Computing

4 iCSC2015, André Pereira, LIP-Minho/University of Minho

Common Parallel Approach

§ CPUs have multiple complex computing cores
§ Use processes/threads to parallelise the code

§ GPUs support a very high number of simultaneous threads
§ Offload data intensive computations to the device

Motivation



Scalable Parallel Computing

5 iCSC2015, André Pereira, LIP-Minho/University of Minho

Common Parallel Approach

§ Both devices coexist on the same system, but…
§ The processing power of the CPU is wasted when offloading code 

to the GPU, and vice-versa

§ Why not simultaneously use both devices?

Motivation



Scalable Parallel Computing

6 iCSC2015, André Pereira, LIP-Minho/University of Minho

HetPlat Architecture



Scalable Parallel Computing

7 iCSC2015, André Pereira, LIP-Minho/University of Minho

GPU Kepler Architecture
HetPlats



Scalable Parallel Computing

8 iCSC2015, André Pereira, LIP-Minho/University of Minho

CUDA Programming Model
HetPlats



Scalable Parallel Computing

9 iCSC2015, André Pereira, LIP-Minho/University of Minho

Levels of Parallelism

Parallelism

Shared Memory

Distributed Memory

Task

Data

Vectorisation

Domain
Partitioning

Platform

Technique



Scalable Parallel Computing

10 iCSC2015, André Pereira, LIP-Minho/University of Minho

CPU Task Parallelism

t1
t2

t2 ≈ t1 / 4 

Levels of Parallelism



Scalable Parallel Computing

11 iCSC2015, André Pereira, LIP-Minho/University of Minho

CPU Data Parallelism

t2 ≈ t1 / 4 

t1
t2

Levels of Parallelism



Scalable Parallel Computing

12 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example

void stencil_1d(int *in, int *out) {
int result = 0;

for (int i = 0; i < SIZE; i++) {
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += in[i + offset];
// Store the result
out[i] = result;

}
} void stencil_1d(int *in, int *out) {

int result = 0;
#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += in[i + offset];

// Store the result
out[i] = result;

}
}

Sequential

Parallel - CPU

Levels of Parallelism



Scalable Parallel Computing

13 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example

void stencil_1d(int *in, int *out) {
int result = 0;
int i = threadIdx.x + blockIdx.x * blockDim.x;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += in[i + offset];

// Store the result
out[i] = result;

}

Parallel - GPU

However, it is highly inefficient…

void stencil_1d(int *in, int *out) {
int result = 0;
#pragma omp parallel for
for (int i = 0; i < SIZE; i++) {

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += in[i + offset];

// Store the result
out[i] = result;

}
}

Parallel - CPU

Levels of Parallelism



Scalable Parallel Computing

14 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Small Example
void stencil_1d(int *in, int *out) {

int result = 0;
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}
// Synchronize (ensure all data is available)
__syncthreads();

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[i + offset];

// Store the result
out[i] = result;

}

GPU – Optimised

With simple optimisations the code 
complexity starts to increase considerably….

Levels of Parallelism



Scalable Parallel Computing

15 iCSC2015, André Pereira, LIP-Minho/University of Minho

Challenges in Heterogeneous Computing

§ Different architectures
§ Distinct designs of parallelism
§ Distinct memory hierarchies

§ Different programming paradigms
§ Distinct code for efficient algorithms among devices

§ Workload management
§ High latency communication between CPU and device
§ Different throughputs among devices

Levels of Parallelism



Scalable Parallel Computing

16 iCSC2015, André Pereira, LIP-Minho/University of Minho

Performance Scalability

§ Consider an efficient algorithm, with optimised parallel code

§ Does the performance scale?
§ With the data set size
§ With the increased number of cores



Scalable Parallel Computing

17 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Real Case Study
Performance Scalability



Scalable Parallel Computing

18 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Real Case Study
Performance Scalability



Scalable Parallel Computing

19 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Real Case Study

§ Optimisation on a dual socket 
homogeneous system
§ KinFit takes 99.8% overall execution time

§ Execution Parallelism
§ Exploring multi-core devices

§ Runtime inefficiencies
§ Multithreading inefficiencies

Parallel Sequential

Performance Scalability



Scalable Parallel Computing

20 iCSC2015, André Pereira, LIP-Minho/University of Minho

A Real Case Study

2x 10-core Intel Xeon E5-2670v2, with Hyperthreading, 64GB RAM

Performance Scalability



Scalable Parallel Computing

21 iCSC2015, André Pereira, LIP-Minho/University of Minho

However…

§ The code either uses the CPU or the GPU
§ Each requires different code

§ Either CPU or GPU processing… Only a factor of the system 
processing potential is being used
§ It would be great to get both codes to simultaneously work sharing the 

same data set

Performance Scalability



Scalable Parallel Computing

22 iCSC2015, André Pereira, LIP-Minho/University of Minho

Performance Portability

§ Several challenges arise
§ How is data partitioned?

§ How is data balanced among 
devices?

§ The code needs synchronisation?

§ Will the code scale?



Scalable Parallel Computing

23 iCSC2015, André Pereira, LIP-Minho/University of Minho

Performance Portability

§ Requires very complex coding
§ Code the algorithm for the CPU

§ Efficiently manage the parallel 
workload

§ Ensure its performance scalability
§ Code the algorithm for the 

accelerator
§ Efficiently manage the parallel 

workload
§ Ensure its performance scalability

Performance Portability



Scalable Parallel Computing

24 iCSC2015, André Pereira, LIP-Minho/University of Minho

Performance Portability

§ Requires very complex coding
§ Manage the workload among 

different devices
§ Not trivial to code
§ Data transfers use a low 

bandwidth connection
§ Computing devices have different 

processing throughputs
§ What is the best data chunk size 

for each?
§ What is the best scheduling 

technique?

Performance Portability



Scalable Parallel Computing

25 iCSC2015, André Pereira, LIP-Minho/University of Minho

HetPlats Challenges
§ “I spent months optimising my code for HetPlats, I bet it will 

be super fast on this new system I just bought”
§ No! You need to re-tune the code for each system…

§ How is it possible to
§ achieve code scalability in each device?
§ simultaneously use both computing

devices?
§ write the code once and guarantee its 

performance across different HetPlats?

Performance Portability



Scalable Parallel Computing

26 iCSC2015, André Pereira, LIP-Minho/University of Minho

Conclusions

§ Current computing platforms are heterogeneous
§ Multicore CPUs coupled with GPUs
§ Current parallel code uses either the CPU or the GPU

§ Performance scalability is not linear
§ Having more cores does not always mean faster code

§ Performance portability is very complex to achieve
§ Each different computing platform requires specific hand tuning
§ Workload balancing is very complex when using CPUs and GPUs 

simultaneously



Scalable Parallel Computing

27 iCSC2015, André Pereira, LIP-Minho/University of Minho

Development of High Performance Computing Applications 
Across Heterogeneous Systems

Lecture 1

Scalable Parallel Computing

André Pereira

LIP-Minho/University of Minho

Inverted CERN School of Computing, 23-24 February 2015


