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Abstract

HEP-Frame is a new C++ package designed to efficiently perform analyses of data sets from a very large number of events, like those
available at the Large Hadron Collider (LHC) at CERN, Geneva. It mainly targets high performance servers and mini-clusters, and it was
designed for natural science experts with a user-friendly interface to access structured databases.

HEP-Frame automatically evaluates the underlying computing resources and builds an adequate code skeleton when creating a data analysis
application. In run-time, HEP-Frame analyses a sequence of data sets exploring the available parallelism in the code and hardware resources:
it concurrently reads inputs from an user-defined data structure and processes them, following the user specific sequence of requirements to
select relevant data; it manages the efficient execution of that sequence; and it outputs results in user-defined objects (e.g., ROOT structures),
stored together with the input data used.

This paper shows how a domain expert software development can benefit from HEP-Frame, and how it significantly improved the perfor-
mance of analyses of large data sets produced in proton-proton collisions at the LHC. Two case studies are discussed: the associated production
of top quarks together with a Higgs boson (t7H ) at the LHC, and a double and single top quark productions at the High-Luminosity phase of
the LHC (HL-HLC). Results show that the HEP-Frame awareness of the analysis code behavior and structure, and the underlying hardware
system, provides powerful and transparent parallelization mechanisms that largely improve the execution time of data analysis applications.

INTRODUCTION

The new Highly Efficient Pipelined Framework (addressed
as HEP-Frame) [1] was developed to efficiently generate,
build and execute analysis codes, designed to process large
data sets. These sets of data can either be acquired by detec-
tors of large experimental collaborations, as typically are the
cases of the LHC experiments, or be artificially generated and
simulated with the help of Monte Carlo methods.

In this paper we describe and use the HEP-Frame main fea-
tures, without loss of generality, in a specific context relevant
for the LHC and its High Luminosity phase (HL-LHC), i.e.,
the development of global analyses of several Physics chan-
nels, simultaneously. The double and single top quark pro-
duction channels at the LHC were used as Physics signals,
in the studies presented in this paper. While the double pro-
duction of top quarks is focused in the semileptonic (gg —
tf — bl v;bgqg') and dileptonic (gg — 17 — bl vybl~ V) de-
cay channels, the single top quark production uses the ¢-
channel (gb — ¢'t — ¢'b¢*vy) and We-channel (gb — tW ™ —
bl vpq3") semileptonic decays.

Other frameworks have been proposed to re-cast phe-
nomenological analysis at the LHC [2]. However, HEP-Frame
is the first framework that aims to optimise not only the user
interface but also the analysis code performance, taking ad-
vantage of the available underlying computing resources dur-
ing the analyses execution. Although HEP-Frame was built
to be used in several scientific contexts, we find particularly
useful for challenging applications in High Energy Physics
(HEP), given the large amount of data collected by the HEP
experiments, like ATLAS [3] and CMS [4].

The LHC has been colliding beams of protons (p) since it
started operations in March 2010, at a centre-of-mass energy
of 7 TeV. Since then, the LHC experiments have been col-
lecting data at increasingly higher centre-of-mass energies, 8

and 13 TeV, until the end of its RUN 2 (at 13 TeV), which
ended operation by the end of October 2018. A total inte-
grated luminosity of ~150 fb~! was delivered, by the LHC
during the RUN 2 alone, to both ATLAS and CMS experi-
ments. With pp collisions every 25 ns, the event rate is so
significant (40 MHz), that dedicated trigger systems needed to
be used, in both experiments, to reduce the event rate of inter-
esting Physics, to a manageable level i.e., lower than roughly
1 kHz.

The importance of the LHC, for the current understanding
of the Standard Model (SM) and its fundamental constituents
is quite crucial. The high production rate of SM particles and
the possibility of studying the gauge bosons interactions have
allowed to probe the SM with an unprecedented precision, at
a new energy scale. As a consequence, ATLAS and CMS
announced July, 4" 2012, the discovery of a new particle,
consistent with the SM Higgs boson with a mass of roughly
125 GeV [5, 6]. This particle was expected to be very rarely
produced at the LHC i.e., 1 signal event per tenths of billions
of pp collisions. Given the level of complexity of the analy-
sis required to identify potential sources of New Physics, the
development of efficient data analysis tools like HEP-Frame,
is indeed quite relevant for any research program at the LHC,
including phenomenological analysis aiming to propose new
strategies to probe the SM.

In the process of automatically generating an analysis appli-
cation skeleton and executing its code, HEP-Frame performs,
in a consistent and completely transparent way for the user,
the following sequential steps:

(1) automatically builds an analysis code skeleton, adapted
to the user input data structure (typically a ROOT file
for LHC case study applications);

(2) scrutinises the available hardware resources by look-
ing, not only at the multicore structure of the underlying



computing system, but also to the available RAM mem-
ory, computing accelerators (e.g., a GPU), disk space,
or other interconnected servers;

(3) depending on the event size and available computing
resources, loads and simultaneously processes several
events, taking into account the total available RAM;

(4) upon user request, can provide different transparent par-
allelisation of several code operations and,

(5) delivers results in the form of user defined data struc-
tures (ROOT objects like histograms, TTrees, Branches
or Leaves, for LHC applications), which may include,
not only the input variables judged as relevant for the
current analysis, but also new variables needed for later
processing, possibly outside of HEP-Frame.

Two real-world case studies have been used to provide a
quantitative and qualitative assessment of HEP-Frame: the
ttH and top quark analyses. The former is used to validate
the functionality and evaluate the performance improvements
of HEP-Frame, for I/O- and compute-bound variations of 1fH
. The latter is used to show how an on-going analysis was
developed using this framework.

The rest of this paper is organised as follows. A short
overview of the HEP-Frame features is presented in Sec-
tion with a link to a public website with more detailed in-
formation, while Section shows how to create a new user
analysis. Section presents 3 versions of the H case study
to evaluate the performance of HEP-Frame, across different
parallelization strategies, in Section . The HL-LHC global top
quark analysis is explained in Section , as a second case study
of this paper. Section present our conclusions. Appendix I,
contains detailed information on how to build and execute an
analysis, using an input publicly available root file, which may
serve as the basis of any user analysis.

AN OVERVIEW OF THE HEP-FRAME TOOL

HEP-Frame is a self contained software tool that builds
analysis programs, which efficiently process large sets of
data. The framework is able to generate codes, across dif-
ferent types of computing platforms (from laptops to clusters,
the grid, clouds, etc.), without requiring the user to perform
any modification, parallelization, or tuning of the existing
code. Upon user request, HEP-Frame automatically gener-
ates a skeleton of an analysis code in C++, adapted to the user
defined input data structure, speeding up the time required to
develop a complex event analyses, as required, for instance, at
the LHC.

The current version of HEP-Frame can be downloaded at
the public website,

https: //bitbucket. org/ ampereira/hep- frame/

which contains a compressed file (<current-hep-frame>.zip),
that includes all the necessary programs to successfully build

an analysis code. Upon extraction, with
unzip <current-hep-frame>.zip,

the <current-hep-frame> HEP-Frame main directory is cre-
ated. It contains the directories lib, scripts, tools and Analysis.
The latter directory is used to store new analysis applications
that can be automatically generated by HEP-Frame. To setup
the appropriate environment and prepare building the skeleton
of the new analysis, the user should move to the HEP-Frame
main directory i.e.,

cd <current-hep-frame>

and compile the code using the HEP-Frame installation script,
in the scripts directory. The script can be executed using the
shell commands

cd scripts
Jinstall.sh /path-to-the-boost-library/boost

The compilation of the whole code uses, by default, the
GNU compiler. HEP-Frame must be linked with two external
libraries: BOOST (whose full path should be provided when
running the installation script, as shown above) and ROOT
(version 5 or 6). Note that, before any analysis code can be
generated by HEP-Frame, the user must make sure that HEP-
Frame was compiled at least once.

CREATING A NEW USER ANALYSIS IN HEP-FRAME

To create a new analysis, the user must provide an input
data file, which is a ROOT file in the case studies presented in
this paper, where a TTree with user-defined data structure is
expected to be read.

Following the successful compilation of the whole code,
the user is now able to generate the skeleton of a new analysis
by running the following shell command (using the scripts in
the scripts directory)

/newAnalysis.sh <AnalysisName> <File> <TTree>

where <AnalysisName> is the name of the new user analysis,
<File> is the full path of the input data file and <TTree> is
the name of the TTree structure in the user defined ROOT file
(where event information is stored) .

This command creates in the Analysis directory a folder,
AnalysisName, which contains the necessary makefiles,
and three new folders, bin, build and src. While the first
two folders store the generated executable and the required
libraries, the src folder stores the automatically generated
C++ code skeleton, together with the required data structures.
The files contained in the src directory are the ones the user

! The user input ROOT file may also have information stored in the form
of ROOT histograms (TH1D, TH2D, and TH3D), which are automatically
loaded.
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will spend most time on, to adapt the generated code to
the specific needs of the analysis. This folder contains the
following files:

Eventlnterface.h,
AnalysisName.cxx,
AnalysisName.h,
AnalysisName_Event.cxx,
AnalysisName_Event.h,
AnalysisName_cfg.cxx.

In the Eventinterface.h file, all variables are made automat-
ically available at every selection level (cut) of the analysis
(including the ones stored in the input file and any addition-
ally required by the user), upon a successful compilation of
the code. No user intervention is expected in this file.

In AnalysisName.cxx, the main analysis class skeleton is
implemented (inherited from the DataAnalysis class of HEP-
Frame), including the analysis initialisation (once per run), its
execution (event by event basis), and finalisation (once per
run) methods. These are implemented together with the list
of cuts that constitute the bulk of the user-defined event se-
lection. Specific global variables of the analysis should be
declared in the AnalysisName class declaration, in the Anal-
ysisName.h file. These variables should be initialised in the
available class constructors of AnalysisName.cxx.

The user can create as many cuts as necessary. Each cut
must return a boolean that indicates if a given event passes
the corresponding selection level (bool cutName), in the
AnalysisName.cxx file. Each cut must be made available to
the DataAnalysis run-time engine, by calling the method

anl.addCut ("cutName", cutName);

Note that the user must update the number of cuts vari-
able (number_of_cuts) in the main function of the Analy-
sisName.cxx file.

The specification of the event information is available in
the AnalysisName_Event.h file, through a C++ class named
HEPEvent, which is used in the data structure that holds all
events in memory. The user can add variables to the event, in
addition to the ones available in the input ROOT data struc-
ture, by declaring them in this file. If this is the case, the
new variables must be initialised with some default value in
the AnalysisName_Event.cxx file, through the init method.
It should be stressed that the new variables are private to each
event and by default they are not automatically saved: the user
needs to specify which event variables are relevant to be stored
and made available to the user in the output ROOT file (in the
AnalysisName_cfg.cxx file), as explained in Appendix .

Once the set of user variables is declared, HEP-Frame en-
sures that the variables will be available at every selection
level in the output ROOT data structure. The concept is quite
simple: once the user realises the information of a specific
variable is relevant at some level of the analysis, HEP-Frame
ensures it will be available at any level and, for levels where
the information was not yet updated, their default value is
used.

HEP-Frame also supports the creation of auxiliary func-
tions to better organise the code. If these functions need ac-
cess to partial or full event information, they must receive
the argument unsigned this_event_counter (for internal
HEP-Frame management), along with any other user-defined
arguments.

The simultaneous analysis of several events requires storing
their data in memory. HEP-Frame transparently controls the
memory allocation and management, which allows the user
to always have access to the event variables available in the
AnalysisName_Event.h and input files as if they were stored
in global memory.

The structure of the code required by a HEP-Frame typi-
cal event analysis is shown in Figure 1. Each element of the
analysis chain represents a task that often requires a signifi-
cant amount of complex C++ code. HEP-Frame implements
and dynamically generates the required C++ code for the blue
boxes, while the user is responsible to provide the selection
criteria for the event analysis (yellow boxes). HEP-Frame au-
tomatically handles code generation while scrutinising the un-
derlying computing resources to optimally process the large
sets of data.
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I_.A.;-::;-:-_"_':'_"_'L';'_ Ll -
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]

FIG. 1: Typical event analysis code structure defined by HEP-Frame.

Following full implementation of the user code in the previ-
ous files, and assuming the user has created the new analysis
in SUSER_WORKDIR directory, the code is ready to run on
the user defined input file(s). To do so, and to perform a fresh
start, a Bash script (e.g. run_analysis.sh) can be used:

# Dont Forget that if you would like to debug
# code use ONLY 1 thread alone by performing
# the following command before running:

# export HEPF_NUM_THREADS=1

cd $USER_WORKDIR/<AnalysisName>

# Remove old libraries

rm ../../1lib/1lib/1ibHEPFrame.a

# Compile and link

make

# run the code

./bin/analysis -f ${inp} -r ${out} -e ${filt}

In the above script, HEP-Frame runs with the input file
(${inpl}), where the structure (e.g. TTree) used to firstly
create the analysis code must exist, creates an output file
(${out}) with the user-defined structures and variables to
record. Optionally, it creates a filtered output file (${£ilt})
with the same structure of the input file, but containing only



the events that passed all the user cuts. It should be noted
that if the user wants to debug the code, it is advised to use
HEP-Frame with a single thread, to avoid receiving concur-
rent messages from different events that are being processed
by several threads at the same time.

THE :tH CASE STUDY

To validate the HEP-Frame tool and to evaluate its perfor-
mance, the first case study used signal events from the asso-
ciated production of top quarks with a Higgs boson (gg —
ttH), at the LHC. While the top quarks were expected to
decay through the leptonic channel (t — bW — blvy), the
Higgs boson decayed through the dominant decay channel,
i.e., H — bb. The b quarks were detected as jets of particles
(labeled b-jets) following the hadronization of the initial par-
tons and showering. The final state topology of (fH events
(gg — ttH — bl v,bl~V,bb), is then characterized by the
existence of four jets from the hadronization of b(l_J) quarks,
two opposite charged leptons (¢*) produced in the top quark
decays, and missing energy from the undetected neutrinos,
Ve(Vy).

The events from ¢t7H signal samples were generated at the
LHC using the MadGraph5_aMC@NLO [7] generator. The
samples have NLO accuracy in QCD and were generated
with the NNPDF2.3 [8, 9] parton density functions. MAD-
SPIN [10] was used to decay the top quarks as well as the
heavy bosons (H and W=). The hadronization, together with
the parton shower, was performed by PYTHIA [11]. All sig-
nal events were passed through a fast simulation of a typical
LHC experiment (performed by DELPHES [12]), using the de-
fault cards to simulate the ATLAS experiment. One should
remark that the theoretical calculation of the t7H process has
been performed either assuming the Higgs boson has an ad-
ditional pseudo-scalar (CP) component or within the SM with
resummation precision [13—18]. The study of the CP proper-
ties of the #17H process through loop corrections has also been
done in [19] and attention has been given to the NLO correc-
tions and off-shell effects that impact the observables used to
probe the CP nature of the top quark Yukawa coupling [20].
It should also be stressed here that several angular distribu-
tions and asymmetries were introduced to study the CP nature
of the Higgs boson coupling [21-24] and interference effects
were studied in [25].

Although neutrinos cannot be detected directly in 7H
events, their four-momenta may be analytically reconstructed
using a kinematic fit. The fit, in addition to imposing energy-
momentum conservation to the selected events, assumes the
neutrinos come from W= boson decays, which, in turn, are
originated from the top quark decays, for which mass con-
straints may be applied [26]. If sufficient constraints are iden-
tified, in a number that exceeds the number of unknowns, i.e.,
the 2 neutrino four-momentum, it is possible to fully recon-
struct the event kinematics. This is the case of the tfH pro-
duction at the LHC with two opposite charge leptons in the

final state.

The code developed for this analysis is a C++ application
that includes an event selection with eighteen cuts, organised
in a sequential way, as a computational pipeline. The mea-
sured computation time of each cut significantly varies, from
few microseconds to several milliseconds per event, depend-
ing on how complex the selection level is. If the event suc-
cessfully passes all cuts, than the kinematic reconstruction is
applied.

The kinematic fit aims to reconstruct the undetected neu-
trinos’ four-momenta, as discussed above. The reconstruc-
tion uses, as constraints, the masses of the top quarks and W
bosons, in the following way. The neutrinos from a W decay
must reconstruct, together with one of the charged leptons,
the correct W boson mass, fixed to 80.4 GeV. This W boson,
when paired together with a b-jet should, in turn, reconstruct
a top quark mass, fixed to 172.5 GeV. Once the two isolated
leptons are associated with the two reconstructed neutrinos to
produce the W bosons, and these are associated to two b-jets
to reconstruct the top quarks, the kinematic reconstruction at-
tempts to reconstruct the Higgs boson. This is done by im-
posing that two, from the remaining b-jets in the event (not
associated to the previously reconstructed top quarks), should
reconstruct a Higgs boson mass of 125 GeV. As there are sev-
eral possible pairing permutations among the b-jets and the
charged leptons, a probability is calculated for each permu-
tation, when reconstructing the neutrinos. As the system of
constraint equations have quadratic forms [26], if a solution
is possible, normally there are several available?. If there are
solutions, the one with highest probability is considered to be
the correct solution, with the correct combination of particles.
The last cut of the event selection is precisely this kinematic
reconstruction, which discards the event if no solution was
found.

The challenge of improving the performance of any recon-
struction that tries to compensate for detector resolutions or
any other effects that have an impact on the kinematic proper-
ties of the events, is indeed of utmost importance. If several
solutions are to be tested per event, and if there are millions
of events to be analysed, rapidly the analysis performance be-
comes very much limited by the available computing power.
Unfortunately, it is very common that the user never cares
about testing the system, during the process of building and
running an analysis. HEP-Frame is particularly useful in this
context: it adapts to the underlying computational resources
of the server and the characteristics of the analysis during its
execution. This allows HEP-Frame to adapt to the server and
analysis without any previous knowledge and no interaction
of the user.

2 In many events, following the DELPHES simulation of ATLAS, the kine-
matic properties of the detected jets and leptons are so distorted due to res-
olution effects, that it is quite impossible to make these events compatible
with a true 17H event. In this case no solution will be possible, compatible
with the mass constraint equations.



To test the HEP-Frame performance for the 17H case study,
three versions of the dileptonic ¢7H analysis were considered:

ttH_as (accurate detector system): this version assumes ac-
curate resolution detectors and the DELPHES simula-
tion of the ATLAS response is taken exactly as is, the
data measured by the ATLAS detector is considered
100% accurate when reconstructing the event. This be-
haves as a I/O-bound code in most compute servers.

ttH_sci ( detector system with a confidence interval ): this
version assumes a 1% random uncertainty, associated
to the ATLAS detector energy and momentum mea-
surements, due to resolution effects. This defines a
confidence interval®. An extensive sampling of events
was performed, where the particles measured energies
and momenta were varied within the fixed uncertainty
during the reconstruction. Only the highest probable
solution was considered, as explained above. This ver-
sion recreates 1024 pseudo experiment samples of the
original one, where each requires the generation of 30
different pseudo-random numbers (PRNs), to a total of
30 Ki numbers per event, leading to a compute-bound
code.

ttH_scinp (sci with a new pipeline): two cuts of the event
selection were replaced to perform different operations
on the data elements, maintaining the same overall cut
dependencies. For this version, only 128 pseudo exper-
iment samples were recreated, within the same confi-
dence interval of the measurements performed for the
previous version of the code (ttH_sci). This version is
also compute-bound, but is less compute intensive than
ttH_sci.

THE HEP-FRAME PERFORMANCE WITH THE tH CASE
STUDY

Four different compute servers were selected for the quan-
titative evaluation of the HEP-Frame performance:

¢ a dual-socket server with 12-core Intel Xeon E5-2695v2
Ivy Bridge (IB) devices (@2.4 GHz nominal, with 64
GiB RAM), coupled with a NVidia Tesla K20 (2496
CUDA cores and 5 GiB of GDDR5 memory).

¢ a dual-socket server with 16-core Intel Xeon E5-2683v4
Broadwell (BW) devices (@2.1 GHz nominal, 1.7 GHz
nominal with AVX2, with 256 GiB RAM).

3 This interval should not be misinterpreted as the usual statistical confi-
dence interval. Here the measurements are sampled within the specified
uncertainty for the possible measurements, on an event by event basis.

¢ a dual-socket server with 24-core Intel Xeon Platinum
8160 Skylake devices (@2.1 GHz nominal, 1.4 GHz
nominal with AVX-512, with 192 GiB RAM).

* asingle-socket server with 64-core Intel Xeon Phi 7210
device, KNL (@1.3 GHz nominal, 1.1 GHz nomi-
nal with AVX-512, 4-way simultaneous multithreading,
with 16 GiB of embedded HBRAM and 192 GiB of
RAM).

The performance of the different versions of the t7fH anal-
ysis code, implemented in HEP-Frame, is briefly discussed in
the next subsections. This evaluation focus on:

* automatic and transparent tuning of HEP-Frame to the
underlying computing resources and automatic multi-
thread parallelisation of the code (Section );

* HEP-Frame advanced task parallelisation of the code
(Section );

* offloading computationally heavy tasks to the GPU ac-
celerator (Section ).

* the overall performance of HEP-Frame with additional
optimisations (Section ).

A more detailed description of the individual parallelization
strategies, from the computing point of view, can be found in
the literature [1, 27-30].

Hardware Aware Multi-Threading

HEP-Frame implements multiple strategies to parallelize
the execution of an event analysis application, each with a
specific purpose. The main focus of this framework is to ef-
ficiently use the computational resources available in hetero-
geneous servers, i.e., multicore and manycore CPU devices
coupled with manycore and GPU accelerators, so that appli-
cations process more data in less time. All optimisations em-
ployed by HEP-Frame are completely transparent to the user,
not requiring any knowledge of the computing platform nor
any interaction from the user.

The main parallelization approach in HEP-Frame relies on
distributing the workload among a pool of automatically cre-
ated and managed threads. This workload can either be related
to input file reading with event pre-processing, or associated
to full event processing, level by level. While the former de-
pends on the complexity of the input ROOT data structures,
the later is determined by the algorithms used in each selec-
tion level, and both may be quite compute intensive.

To parallelize this mixed workload, HEP-Frame dynami-
cally manages during run-time the amount of threads assigned
to input reading and to event processing, adapting to its re-
quirements without any user interaction. HEP-Frame able,



upon receiving a batch of input files, to automatically man-
age file pre-processing and write to the output file intermedi-
ate (during execution) and final (when the application finishes
execution) user defined data.

The framework has a simple and an advanced strategy to
parallelize the event processing. The simple strategy assigns
different events to different computing threads, each process-
ing the whole pipeline of cuts, individually for each event.
The performance of this strategy is compared against a stan-
dard multiprocess approach, where the user has to launch each
individual process with different input files and ensure that
they successfully finish executing, in Figure 2. The advanced
strategy is discussed in section , below.
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FIG. 2: Speedup of the parallel t7H analyses with HEP-Frame mul-
tithread parallelisation vs a standard multiprocess parallelisation for
the same number of processes/threads on a server with single or dual
multicore devices.

HEP-Frame outperforms the standard multiprocess paral-
lelization, for the same amount of threads/processes, in all
variations of the t7H analysis, with improvements up to 5.2x,
8.2x, and 7.0x for the ttH_as, ttH_sci, and ttH_scinp,
respectively. These performance improvements are not re-
stricted to a single server, but are consistent among the single-
socket and dual-socket servers of different architectures (Ivy
Bridge, Broadwell, and Skylake), as HEP-Frame automati-
cally adapts the amount of threads and parallelization strate-
gies to the characteristics of the server in run-time.

Hardware Aware Task Parallelisation

The initial execution order of the cuts in the processing
pipe-line is defined by the user, following a simple logical
reasoning determined, in most cases, by the characteristics of
signal events. Although this is normally the typical procedure,
when first defining the event selection, this may not be the best
ordering, in terms of computational efficiency. This is partic-
ularly relevant for large data sets and, the ones collected at the
LHC, are good examples of those.

Reordering the cuts, while respecting the dependencies
among cuts to ensure the correctness of the results, often leads
to a faster execution of the pipeline. If the cuts that discard
more data elements, are placed earlier in the pipeline, and the
heavier cuts in later stages, fewer data will be processed by

the heavier, computational intensive, cuts, reducing the over-
all execution time of the pipeline. This reordering must take
into account the amount of events that each cut filters out, as
well as their execution time.

The order of the cuts in the pipeline has a significant impact
on performance, since having the most compute intensive cuts
at the end of the pipeline is more efficient as they are applied to
fewer events than if they were placed in the beginning. Static
ordering of the cuts is not a recommended approach for these
applications, since the behaviour of the cuts cannot be mea-
sured before executing the application, and may even change
during its execution. Alternatively, HEP-Frame dynamically
optimises the ordering of the cuts during execution, by dis-
tributing them among the available processing threads. This
is done not only for the cuts in the same event but also when
multiple events are simultaneously processed.

Parallelizing the workload at the cut level ensures that a
more efficient load balance can be obtained for both memory-
and compute-bound applications due to the smaller size of
each individual task, as opposed to parallelize only at the event
level. This reordering optimisation is on by default, but the
user may explicitly disable it during the debugging phase, to
assess, in a controlled environment, what is happening inside
each cut in a fixed order.

The performance of the multithreaded #H analyses, using
a multiprocess approach, was compared against their imple-
mentations in HEP-Frame using one and two Xeon devices of
the Ivy Bridge, Broadwell and Skylake micro-architectures,
as shown in Figure 3. Both parallelisations use a single thread
per physical core on the server, as preliminary tests showed
that using hardware support for simultaneous multithreading
in each core (addressed as Hyper-Threading by Intel) did not
provide noticeable performance improvements. HEP-Frame
significantly improved the performance of all multithreaded
implementations:

ttH_as: up to 6x, mostly due to simultaneous event reading
and processing.

ttH_sci and ttH_scinp: 15x and 17x speedups, respec-
tively, mostly due to the pipeline reordering scheduler.

ttH_scinp: performance improvements also due to a worse
initial pipeline order than ttH_sci.

The performance gap between HEP-Frame and multipro-
cess increases proportionally to the number of cores in the
server, as shown by the improved speedup when using dual
Broadwell and Skylake devices over a single device. This
proves that the multiprocess approach efficiency diminishes
opposed to HEP-Frame, especially when dealing with a high
number of workers, and that this difference is not only related
to the pipeline reordering.

Finally, the whole event processing, from single or multiple
input files, is transparently managed by HEP-Frame, which
avoids the overhead of an user close control of the execution
of multiple processes.
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FIG. 3: Speedup of the parallel 17H analyses with HEP-Frame task
parallelisation vs a standard multiprocess parallelisation for the same
number of processes/threads on a server with single or dual multicore
devices.

It should also be mentioned that the initial ordering of the
pipeline in these 7H analyses, as defined by domain experts,
had luckily most of their cuts filtering out more events at the
beginning of the event selection, leaving the heavier cuts to the
final pipeline stages. Applications with worse default pipeline
orders would benefit even more from the HEP-Frame pipeline
reordering.

Offloading Computationally Heavy Tasks to Accelerators

Porting code from external libraries to a GPU device (or
other accelerator device) is not always possible or feasible in
the short available time of a domain expert. In these cases,
HEP-Frame can automatically take advantage of these com-
puting accelerators by offloading computationally heavy tasks
to them, freeing the host multicore devices to process the re-
maining parts of the applications. Since cuts cannot be of-
floaded, as it would require the user to provide the GPU code,
which is often not possible due dependencies on external li-
braries, such as ROOT, these devices should be used to accel-
erate tasks common among various analyses. HEP-Frame has
already one of these heavy and highly used tasks implemented
to work in the offload mode: an efficient pseudo-random num-
ber generator (PRNG) for large datasets [30].

In the execution time measurements with the tfH case
study, HEP-Frame took advantage of the available GPU de-
vice in the IB server: it used the Mersenne Twister PRNG, the
default PRNG provided by ROOT, implemented in MKL [31]
for the multicore-only servers and implemented in cuRAND
[32] when offloading to a GPU device. The Mersenne Twister
PRNG implementation in ROOT is considerably slower than
these two alternatives. The use of the Kepler GPU improved
the performance of the ttH_sci and ttH_scinp by 70x and
12x, respectively, compared to generating PRNs using ROOT;
this improvement is proportional to the number of PRNs re-
quired by each one of these applications.

Overall Performance

Figure 4 compares the overall performance of the three ver-
sions of the 7H analyses, implemented with HEP-Frame, with
their original sequential implementation. The execution times
were measured on the best multicore servers (with dual Broad-
well and Skylake devices), on the Ivy Bridge server with a
NVidia Kepler GPU, and on the Intel KNL server.
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mttH_as mttH_sci ttH_scinp

250

KNL Server
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) I
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FIG. 4: Overall speedup of the t7H analysis on HEP-Frame vs their
original sequential implementations.

HEP-Frame provided a significant execution time improve-
ment for every case study version, confirming its performance
portability across multiple platforms with significant architec-
tural differences. It adapted well to irregular compute-bound
code, with speedups up to 252x and 185x for the ttH_sci
and ttH_scinp versions, respectively, on the KNL server. It
also efficiently handled the I/O-bound ttH_as version, with a
speedup 30x for every server, due to its dynamic tuning of the
amount of threads assigned for simultaneous input reading
and event processing.

The KNL server outperformed every other server mainly
due to its core count and greater vectorization capabilities:
two AVX-512 vector units per core, while Skylake has only
one AVX-512 vector unit and Broadwell and Skylake have
AVX units to operate on 256 bits. These two also suffered
significant down clock frequency due to the AVX instructions,
which is less severe on the KNL.

THE TOP QUARKS ANALYSIS CASE STUDY

This section presents the second case study, the analysis of
top quarks at the HL-LHC. This case study was implemented
using HEP-Frame, which was also used to manage its efficient
execution and produce the results presented in this section, us-
ing large sets of simulated data through Monte-Carlo methods
The choice of performing a global analysis of double and sin-
gle top quark production at the HL-LHC simultaneously poses
concrete challenges, which HEP-Frame can easily address.

The pipelines of the event selections presented here, follow
closely the ones made available by the ATLAS Collaboration,



for the double top quark production [33, 34], and single top
quark search [35-37], at the LHC. As discussed in Section ,
while the double production of top quarks concentrates on
both the semileptonic (gg — t7 — bl vybqq') and dileptonic
(gg — tf — bl v;bl~V,) decay channels, the single top quark
production uses the 7-channel (gb — ¢'t — ¢'bl* vy) and Wt-
channel (gh — tW~ — bl"v,qG") semileptonic decays, alone.

Event Selection at the HL-LHC

The pipeline of cuts used to define the global event selec-
tion of top quark events at the HL-LHC aims to efficiently
identify signal regions, corresponding to the different physics
channels under study, to be, as much as possible, free of SM
backgrounds. The events that pass all cuts are used to build
specific angular distributions that are sensitive to BSM. As
these angular distributions involve the knowledge of the four-
momentum of top quarks, full reconstruction of the kinematic
properties of final state particles is mandatory, in particular for
the undetected neutrinos.

The signal regions, targeted by the event selection, were
divided into:

(1) three semileptonic final states, corresponding to the pro-
duction of #f and single top quark events through the -
and Wt-channels, where exactly 1 isolated (AR* < 0.4)
lepton (e* or u™) is found, and

(2) two dileptonic final state topologies, from ¢ and Wt
single top quark associated production, where exactly
2 isolated and opposite sign charged leptons (eT u ™) of
different flavours, are present.

A cut on the missing transverse energy (EX*) was also
applied to events, EJ*>30 GeV. Events were further clas-
sified according to the number of jets existing in three non-
overlapping 1 regions corresponding to,

* one central region, where the jets 11 obey the condition
|n|<2.5 (labelled as Region I),

* aregion where the jets 1 was in the range 2.5 < |n| <
2.75 (Region II), and

* a forward region, where 2.75 < || < 3.50 (Region III).

These specific signal regions were defined following 7 ac-
ceptance regions commonly used in 7 and single top quark
event selections (for both semileptonic and dileptonic final
states) [33-37]. The events were split among different sig-
nal bins, according to lepton, jets and b-jets multiplicities:

4 The pseudorapidity 1 of a particle is defined as 1 = — In[tan(6/2)], where
6 is the particle’s polar angle. The pseudorapidity difference between two
particles (An) together with their azimuthal angle difference A¢ are used

to defined the AR = /(An)? + (A¢)? distance.

(1) signal bins from ¢7 semileptonic (dileptonic) decays,
were populated with events with exactly 1 charged lep-
ton (2 opposite sign charged leptons), at least 4 jets in
Region I and exactly 2 b-jets (at least 2 jets in Region
I and exactly 2 b-jets). No jets in Regions II and III
were allowed in #7 signal bins. For the ¢7 dileptonic de-
cays, the invariant mass of the two leptons (M;+,-) was
required to be above 40 GeV;

(2) bins of single top quark ¢-channel events, were popu-
lated, if they had exactly 1 charged lepton, 1 jet in Re-
gion I and 1 jet in either Region II or III, with exactly 1
b-jet;

(3) bins from signal events of Wt single top quark produc-
tion, which decayed through the semileptonic (dilep-
tonic) channel were filled with events with exactly 1
charged lepton (2 opposite sign charged leptons), 3 jets
in Region I and exactly 1 b-jet (1 or 2 jets in Region I
and exactly 1 b-jet). No jets in Regions II or III were
allowed in the events. Moreover, for the semileptonic
channel, in order to reduce the ¢7 background, a cut on
the W-boson transverse mass (va,) was applied above
50 GeV.

As explained in Section , the cuts discussed above were
implemented in the AnalysisName.cxx file. As an example
we show how to do it for the EfS cut. As its information
is relevant for later use, we also show how to declare a new
variable (ETmis) to store its value and save it to the output
ROOT file, after initialisation. We start by declaring the
variable in AnalysisName_Event .h,

class HEPEvent {
TTree *fChain;
public:

// Add your own event variables here!
double ETmis;

}

Next, we initialise ET mis in AnalysisName_Event .cxx,

bool HEPEvent::init (void) {
// Initialize all my variables of this event

ETmis = -9999.;

}

The ETmis variable can now be added to the user list of vari-
ables to be recorded, in AnalysisName_c f g.cxx, right after the
end of the writeVariables method. This will make the variable
available in the output ROOT file, for later use. Following the
previous example, the lines of code required to add ET mis to
the relevant list of variables are,

void AnalysisName::writeVariables (void) {
}

// Write here the variables and expressions
// to record per cut



#ifdef RecordVariables
ETmis
#endif

The variables considered as relevant, which are indicated to
HEP-Frame as shown above, will be automatically stored in
a TTree, one per cut, and stored in a ROOT file at the end of
the analysis execution. Once the ETmis variable has been
declared, it can be used in a cut, in the AnalysisName.cxx
file. The cut must return a boolean, which indicates if a given
event passes the cut, and it is advised that the user creates a
cut_evaluation function (just to better organise the code, not
done automatically by HEP-Frame) to perform all the user re-
quested actions upon a true return of the cut result. The lines
of code resemble to,

void cut_evaluation (unsigned this_event_counter) {
// A cut can evaluated variables
ETmis *= 1.05; // scale factor to ETmis

}

bool cut (unsigned this_event_counter) {

// A cut should return true or false

if ( met_met <= 30000. ) {
return false;

} else {
ETmis = met_met;
cut_evaluation(this_event_counter);
return true;

To call the cut in the same AnalysisName.cxx file, we
just need to include the following lines of code, in the main
method, not forgetting to increment the counter of cuts,

int main (int argc, char *argv[]) {
// Do not forget to set the number of

// You must also set them on the Makefile
unsigned number_of_cuts = 1;

// Add the cuts using the addCut method
anl.addCut("cut", cut);

return O;

In Figure 5 we show the missing transverse energy for #7
semileptonic events (top) and single-top quark Wt dileptonic
events (bottom), after full event selection. The signal and all
SM backgrounds are shown for completeness, assuming the
full luminosity at the HL-LHC (3000 fb—1).

Kinematic Reconstruction of Signal Events

Following the event selection, full kinematic reconstruction
is applied to each signal region i.e., to the semileptonic and
dileptonic final states from ¢7, single top quark 7-channel and
Wt-channel decays. In each signal region and for each possi-
ble jet and lepton combination, a x? function was minimized
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FIG. 5: The missing transverse energy for ¢7 semileptonic events
(top) and single-top quark Wt dileptonic events (bottom).

to derive the four-momentum of the undetected neutrino(s)
and reconstruct the top-quark(s) and W-boson(s) masses. The
solution, among all possible combinations of jets and leptons,
which minimizes the value of the )(2, defined as,

m nﬂy)z
(4%
v L)

Gi m=1(2) Oy

( Teco

is chosen. The indices k and m can either take the value 1 or
2, depending on the number of top quarks and W-bosons ex-
pected in the events. While for #7 events 2 top quarks and 2 W-
bosons should be present (in both semileptonic and dileptonic
final states), in single top quark events from Wt associated
production, only 1 top quark and 2 W-bosons should be recon-
structed, while for the 7-channel only 1, of each, should exist.
In the xz definition, mﬁ‘ij’ (my5°) represents the reconstructed
invariant mass of the top quark (W-boson), for the particular
combination of jets and leptons under consideration.

The central values of the top quark mass () and W-boson
mass (my ), were fixed to 172.5 GeV and 80.4 GeV, respec-
tively. The corresponding widths, o; and oW, were set to
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FIG. 6: The reconstructed top quark mass in ¢7 semileptonic events
(top) and single-top quark Wt events (bottom).

11.5 GeV and 7.5 GeV, respectively. In the minimization pro-
cedure, the E;”“ is assumed to be the transverse momentum
of the undetected neutrino(s). While for the semileptonic final
states only the pz component of the neutrino four-momentum
remains to be determined, for the dileptonic final states, two
neutrinos must be fully reconstructed. This implies, splitting
the E’T”iss between the two neutrinos and determine, using the
mass constraints from the y2 function, their p; component.
In Figure 6 we show the top quark mass reconstruction for
semileptonic 7 events (top) and single-top quark Wt events
(bottom), after event selection. The signal and all SM back-
grounds are shown for completeness, assuming the full lumi-
nosity at the HL-LHC (3000 fb—1).

CONCLUSIONS

In this paper we presented the Highly Efficient Pipelined
Framework (HEP-Frame), a C++ tool created with two pur-
poses: (i) to help the development of analysis and simulation
codes that process large amounts of data; (ii) to ensure the
efficient usage of the underlying parallel hardware available
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in servers with and without computing accelerators, namely
GPU devices. HEP-Frame provides an easy user interface
to develop code, by automatically creating analysis skeletons
based on input data structures, significantly speeding up code
development. It implements several parallelization strategies,
so that the analysis code dynamically and transparently adapts
to the available hardware, without the need of any user in-
tervention, to ensure efficient execution of the applications
across a variety of systems.

Two examples of High Energy Physics analysis, at the
LHC, were discussed in this paper, as case studies: the asso-
ciated production of top quarks together with a Higgs boson
(ttH ), and the double and single top quark production at the
HL-LHC.

For the tfH analysis case, three versions of the fH anal-
ysis were developed, with different computational charac-
teristics that allowed to provide insight on how compute-
and I/O-bound applications can be improved when using
the framework. The three variations used of the /7H anal-
ysis, ttH_as (I/O-bound), ttH_sci and ttH_scinp (both
compute-bound) showed performance improvements up to 6x,
15x, and 17x, respectively, over a conventional multiprocess
approach for the same number of processes/threads.

HEP-Frame outperforms conventional strategies used for
parallelization while removing the need of monitoring cor-
rect execution of hundreds of processes, which is often a
time consuming task. The improvements on performance,
were consistent on 24-core Ivy Bridge and 32-core Broadwell
servers. The performance of the Ivy Bridge server is simi-
lar to the Skylake when using a GPU device to automatically
offload pseudo-random number generation for the ttH_sci
and ttH_scinp applications. HEP-Frame provided an over-
all speedup of 30x, 89x, 74x for the Ivy Bridge server with
a Kepler GPU, and 31x, 258x, and 185x on the Intel Knights
Landing manycore server, for ttH_as (I/O-bound), ttH_sci,
and ttH_scinp, respectively, over their original sequential
implementations.

For the double and single top quark production at the HL-
LHC, the analysis code was extended to several different final
state topologies i.e., semileptonic and dileptonic ¢f production,
as well as #-channel and Wt-channel associated production in
the semileptonic channel, alone. Full kinematic reconstruc-
tion of events was performed by minimising a 2 distribution,
which allowed to classify events according to the number of
top quarks and W-bosons, in the final state.
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APPENDIX I

In this Appendix, the example of how to build a full analy-
sis chain, based on the data file provided with the package for
download, is described. The input file, corresponding to the
generation of a t7H signal at the LHC, is provided after the
DELPHES simulation of a typical LHC experiment, using the
default ATLAS detector cards available. The input data file
(input_event_data.root) is a ROOT file, with a T Treex data
structure named Physics, with several Leaves that contain
the events kinematic properties. Although any system could
be used to execute the example, in what follows the CERN
computing system was chosen, without any loss of generality.
Upon login, (ssh -l username Ixplus.cern.ch), the following
global variables are defined (including a link to the BOOST
library main directory),

1export dir = main HEP-Frame source directory,
export data = input data file directory,
export boost = Boost library main directory.

The gcc compiler (in $GCC directory) and ROOT versions
(in $ROOT directory) are set (if not done by default) with,

source $GCC/setup.sh,

source $ROOT/thisroot.sh,

export LD_LIBRARY_PATH=$BOOST/lib:
SLD_LIBRARY_PATH

As mentioned in Section , the current version of the code was
downloaded from,

https: //bitbucket. org/ ampereira/ hep- frame/,

unzipped (unzip download.zip) and renamed to HepFrame
(mv ampereira-hep-frame HepFrame).

Creating the Event Analysis

To create a new user analysis, the installation scripts (in the
scripts directory) were run, using

cd HepFrame/scripts

Jinstall.sh ${boost}

/newAnalysis.sh AnalysisName
${data}/input_event_data.root Physics

cd ../Analysis/AnalysisName/src

where the following files can be found,

AnalysisName_cfg.cxx
AnalysisName.cxx
AnalysisName_EventBranches.h
AnalysisName_Event.cxx
AnalysisName_Event.h
AnalysisName.h
Eventlnterface.h

Once available, the files can be edited and updated, according
to user requirements.
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Implementation and Running

In order to implement the current analysis, few variables
were included, as examples, in the variables list to be later
saved for processing. These variables, mTTH and ptTTH,
correspond to the tfH mass and transverse momentum, respec-
tively, were referred to be saved in AnalysisName_cfg.cxx,

#ifdef RecordVariables
mTTH

ptTTH

#endif

and declared in AnalysisName_Event.h

Float_t mTTH;
Float_t ptTTH;

and initialized in AnalysisName_Event.cxx

mTTH =

0;
ptTTH 0

0.
0.0;

>

To allow histograms to be saved into a ROOT file, useful after
running, a new file (a TFile type) was declared in Analysis-
Name.h by inserting a new class variable and the histograms
declaration, i.e.,

TFile *AnalysisName_Histos;

TH1D *hmTTH = new TH1D("hmTTH", "ttH mass [GeV]",
100, 0., 300.);

TH1D *hptTTH = new TH1D("hptTTH", "ttH pt [GeV]",
100, 0., 300.);

Following all previous steps, the implementation of the event
selection, analysis and histogram filling, was performed in
AnalysisName.cxx, provided in this example. This is the final
step before compiling and running. The implemented code in
the example resembles the following,

void AnalysisName::finalize (void) {
// Create a new file to store the fChain TTree
AnalysisName_Histos = new TFile("histos.root",
"recreate");
AnalysisName_Histos->cd();
// output histograms
hmTTH->Write () ;
hptTTH->Write();
// close file
AnalysisName_Histos->Close();

}

// Evaluate requirements for the specific cut

void cut_evaluation (unsigned this_event_counter) {
// Put here your evaluations code
TLorentzVector Top, Tbar, Higgs;
// Initialization

Top.SetPtEtaPhiM (PtTopQ, EtaTopQ,PhiTopQ, mTopQ );


https://bitbucket.org/ampereira/hep-frame/

Tbar.SetPtEtaPhiM(PtTbarQ,EtaTbarQ,PhiTbarQ, mTbarQ);

epjc/s10052-019-6746-z

Top.SetPtEtaPhiM (PtHiggs,EtaHiggs,PhiHiggs, mHiggs)[;16] A. Broggio, A. Ferroglia, B.D. Pecjak, L.L. Yang, JHEP 02,

// ttH system
TLorentzVector ttH = Top + Tbar + Higgs;
mTTH = ttH.MQ);
ptTTH = ttH.Pt();
}
// Sample cut, always define a cut like this
bool cut (unsigned this_event_counter) {
// A cut should return true or false
if (PtTopQ > 25.0 &% abs(EtaTopQ) < 2.5 &&
PtTbarQ > 25.0 && abs(EtaTbarQ) < 2.5 &&
PtHiggs > 25.0 && abs(EtaHiggs) < 2.5) {
cut_evaluation(this_event_counter);
return true;
} else { return false;}

In order to compile the code just implemented above, the user
just need to perform,

cd HepFrame/Analysis/AnalysisName
rm .././lib/lib/libHEPFrame.a
make
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